

SILENCE ON THE WIRE

SILENCE ON THE
WIRE

A F i e l d G u i d e t o P a s s i v e
R e c o n n a i s s a n c e a n d I n d i r e c t A t t a c k s

by Michal Zalewski

San Francisco

SILENCE ON THE WIRE. Copyright © 2005 by Michal Zalewski.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or by any information storage or retrieval system, without the prior
written permission of the copyright owner and the publisher.

15 14 13 12 6 7 8 9

ISBN-10: 1-59327-046-1
ISBN-13: 978-1-59327-046-9

Publisher: William Pollock
Managing Editor: Karol Jurado
Production Manager: Susan Berge
Cover and Interior Design: Octopod Studios
Developmental Editors: William Pollock and John Mark Walker
Technical Reviewer: Solar Designer
Copyeditor: Pat Coleman
Compositor: Riley Hoffman
Proofreader: Stephanie Provines
Indexer: Ted Laux

For information on book distributors or translations, please contact No Starch Press, Inc. directly:

No Starch Press, Inc.
555 De Haro Street, Suite 250, San Francisco, CA 94107
phone: 415.863.9900; fax: 415.863.9950; info@nostarch.com; http://www.nostarch.com

Library of Congress Cataloging-in-Publication Data

Zalewski, Michal.
Silence on the wire : a field guide to passive reconnaissance and indirect attacks / Michal

Zalewski.
p. cm.

Includes index.
ISBN 1-59327-046-1

1. Computer networks--Security measures. I. Title.
TK5105.59.Z35 2005
005.8--dc22

2004009744

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other product and
company names mentioned herein may be the trademarks of their respective owners. Rather than use a trademark
symbol with every occurrence of a trademarked name, we are using the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been
taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the
information contained in it.

For Maja

A B O U T T H E A U T H O R

Michal Zalewski is a self-taught information security researcher who has
worked on topics ranging from hardware and OS design principles to
networking. He has been a prolific bug hunter and a frequent Bugtraq
poster since the mid ’90s and has authored popular security utilities such as
p0f, a passive OS fingerprinter. He has also published a number of acclaimed
security research papers. Michal has worked as a security expert for several
reputable companies, both in his native Poland and the U.S., including two
major telecoms. In addition to being an avid researcher and occasional
coder, Michal dabbles in the fields of artificial intelligence, applied
mathematics, and electronics, and is also an amateur photographer.

B R I E F C O N T E N T S

Foreword
xix

Introduction
xxiii

Part I: The Source

Chapter 1
I Can Hear You Typing

3

Chapter 2
Extra Efforts Never Go

Unnoticed
21

Chapter 3
Ten Heads of the Hydra

51

Chapter 4
Working for

the Common Good
57

Part II: Safe Harbor

Chapter 5
Blinkenlights

65

Chapter 6
Echoes of the Past

89

Chapter 7
Secure in Switched Networks

95

Chapter 8
Us versus Them

103

Part III: Out in the Wild

Chapter 9
Foreign Accent

113

Chapter 10
Advanced

Sheep-Counting Strategies
151

Chapter 11
In Recognition of Anomalies

173

Chapter 12
Stack Data Leaks

189

Chapter 13
Smoke and Mirrors

193

Chapter 14
Client Identification:

Papers, Please!
199

Chapter 15
The Benefits of Being a Victim

219

Part IV: The Big Picture

Chapter 16
Parasitic Computing,

or How Pennies Add Up
227

Chapter 17
Topology of the Network

243

Chapter 18
Watching the Void

253

Closing Words
261

Bibliographic Notes
263

Index
269
x Br ie f Contents

C O N T E N T S I N D E T A I L

FOREWORD xix
by Solar Designer

INTRODUCTION xxiii

A Few Words about Me ..xxiii
About This Book ..xxiv

PART I: THE SOURCE
On the problems that surface long before one sends any information over the network

1
I CAN HEAR YOU TYPING 3
Where we investigate how your keystrokes can be monitored from far, far away

The Need for Randomness .. 4
Automated Random Number Generation ... 6

The Security of Random Number Generators ... 7
I/O Entropy: This Is Your Mouse Speaking .. 8

Delivering Interrupts: A Practical Example .. 8
One-Way Shortcut Functions ... 11
The Importance of Being Pedantic ... 12

Entropy Is a Terrible Thing to Waste ... 13
Attack: The Implications of a Sudden Paradigm Shift .. 14

A Closer Look at Input Timing Patterns ... 15
Immediate Defense Tactics .. 18
Hardware RNG: A Better Solution? ... 18

Food for Thought .. 19
Remote Timing Attacks ... 19
Exploiting System Diagnostics ... 20
Reproducible Unpredictability ... 20

2
EXTRA EFFORTS NEVER GO UNNOTICED 21
Where we learn how to build a wooden computer and how to obtain information from
watching a real computer run

Boole’s Heritage .. 21
Toward the Universal Operator .. 22

DeMorgan at Work ... 23

Convenience Is a Necessity .. 24
Embracing the Complexity .. 25

Toward the Material World ... 25
A Nonelectric Computer ... 26
A Marginally More Popular Computer Design .. 27

Logic Gates .. 27
From Logic Operators to Calculations ... 28
From Electronic Egg Timer to Computer ... 31
Turing and Instruction Set Complexity ... 32

Functionality, at Last .. 34
Holy Grail: The Programmable Computer ... 35
Advancement through Simplicity ... 35
Split the Task .. 36
Execution Stages ... 37
The Lesser Memory .. 38
Do More at Once: Pipelining .. 39
The Big Problem with Pipelines .. 40

Implications: Subtle Differences .. 41
Using Timing Patterns to Reconstruct Data .. 42
Bit by Bit 42

In Practice ... 44
Early-Out Optimization .. 44
Working Code—Do It Yourself .. 46

Prevention ... 48
Food for Thought .. 49

3
TEN HEADS OF THE HYDRA 51
Where we explore several other tempting scenarios that occur very early on in the process
of communications

Revealing Emissions: TEMPEST in the TV ... 52
Privacy, Limited .. 53

Tracking the Source: “He Did It!” .. 54
“Oops” Exposure: *_~1q'@@ . . . and the Password Is 55

4
WORKING FOR THE COMMON GOOD 57
Where a question of how the computer may determine the intent of its user is raised and
left unanswered
xii Contents in Detai l

PART II: SAFE HARBOR
On the threats that lurk in between the computer and the Internet

5
BLINKENLIGHTS 65
Where we conclude that pretty can also be deadly, and we learn to read from LEDs

The Art of Transmitting Data .. 66
From Your Email to Loud Noises . . . Back and Forth 68
The Day Today ... 73
Sometimes, a Modem Is Just a Modem ... 74
Collisions Under Control .. 75
Behind the Scenes: Wiring Soup and How We Dealt with It 76
Blinkenlights in Communications ... 78

The Implications of Aesthetics .. 80
Building Your Own Spy Gear 81
. . . And Using It with a Computer .. 82
Preventing Blinkenlights Data Disclosure—and Why It Will Fail 85
Food for Thought .. 88

6
ECHOES OF THE PAST 89
Where, on the example of a curious Ethernet flaw, we learn that it is good to speak
precisely

Building the Tower of Babel ... 90
The OSI Model ... 91

The Missing Sentence ... 92
Food for Thought .. 94

7
SECURE IN SWITCHED NETWORKS 95
Or, why Ethernet LANs cannot be quite fixed, no matter how hard we try

Some Theory ... 96
Address Resolution and Switching ... 96
Virtual Networks and Traffic Management .. 97

Attacking the Architecture .. 99
CAM and Traffic Interception .. 100
Other Attack Scenarios: DTP, STP, Trunks ... 100

Prevention of Attacks .. 101
Food for Thought .. 101
Contents in Detai l xiii

8
US VERSUS THEM 103
What else can happen in the local perimeter of “our” network? Quite a bit!

Logical Blinkenlights and Their Unusual Application .. 105
Show Me Your Typing, and I Will Tell You Who You Are 105

The Unexpected Bits: Personal Data All Around .. 106
Wi-Fi Vulnerabilities ... 107

PART III: OUT IN THE WILD
Once you are on the Internet, it gets dirty

9
FOREIGN ACCENT 113
Passive fingerprinting: subtle differences in how we behave can help others tell who
we are

The Language of the Internet .. 114
Naive Routing ... 115
Routing in the Real World .. 116
The Address Space .. 116
Fingerprints on the Envelope ... 118

Internet Protocol ... 118
Protocol Version .. 119
The Header Length Field .. 119
The Type of Service Field (Eight Bits) .. 120
The Total Packet Length (16 Bits) ... 120
The Source Address ... 120
The Destination Address ... 121
The Fourth Layer Protocol Identifier .. 121
Time to Live (TTL) ... 121
Flags and Offset Parameters ... 122
Identification Number .. 123
Checksum ... 124

Beyond Internet Protocol .. 124
User Datagram Protocol .. 125

Introduction to Port Addressing ... 125
UDP Header Summary ... 126

Transmission Control Protocol Packets ... 126
Control Flags: The TCP Handshake .. 127
Other TCP Header Parameters .. 130
TCP Options ... 132

Internet Control Message Protocol Packets ... 134
Enter Passive Fingerprinting ... 135

Examining IP Packets: The Early Days .. 135
Initial Time to Live (IP Layer) .. 136
The Don’t Fragment Flag (IP Layer) .. 136
The IP ID Number (IP Layer) .. 137
xiv Contents in Detai l

Type of Service (IP Layer) ... 137
Nonzero Unused and Must Be Zero Fields (IP and TCP Layers) 138
Source Port (TCP Layer) .. 138
Window Size (TCP Layer) .. 139
Urgent Pointer and Acknowledgment Number Values (TCP Layer) 139
Options Order and Settings (TCP Layer) ... 140
Window Scale (TCP Layer, Option) ... 140
Maximum Segment Size (TCP Layer, Option) .. 140
Time-Stamp Data (TCP Layer, Option) .. 140
Other Passive Fingerprinting Venues .. 141

Passive Fingerprinting in Practice ... 142
Exploring Passive-Fingerprinting Applications .. 143

Collecting Statistical Data and Incident Logging .. 144
Content Optimization .. 144
Policy Enforcement .. 144
Poor Man’s Security .. 145
Security Testing and Preattack Assessment .. 145
Customer Profiling and Privacy Invasion ... 145
Espionage and Covert Reconnaissance .. 146

Prevention of Fingerprinting ... 146
Food for Thought: The Fatal Flaw of IP Fragmentation ... 147

Breaking TCP into Fragments .. 148

10
ADVANCED SHEEP-COUNTING STRATEGIES 151
Where we dissect the ancient art of determining network architecture and computer’s
whereabouts

Benefits and Liabilities of Traditional Passive Fingerprinting 151
A Brief History of Sequence Numbers ... 154
Getting More Out of Sequence Numbers .. 155
Delayed Coordinates: Taking Pictures of Time Sequences .. 156
Pretty Pictures: TCP/IP Stack Gallery ... 160
Attacking with Attractors ... 166
Back to System Fingerprinting .. 169

ISNProber—Theory in Action .. 169
Preventing Passive Analysis ... 170
Food for Thought ... 171

11
IN RECOGNITION OF ANOMALIES 173
Or what can be learned from subtle imperfections of network traffic

Packet Firewall Basics ... 174
Stateless Filtering and Fragmentation ... 175
Stateless Filtering and Out-of-Sync Traffic ... 176
Stateful Packet Filters ... 177
Packet Rewriting and NAT .. 178
Lost in Translation .. 179
Contents in Detai l xv

The Consequences of Masquerading .. 180
Segment Size Roulette ... 181
Stateful Tracking and Unexpected Responses ... 183
Reliability or Performance: The DF Bit Controversy .. 184

Path MTU Discovery Failure Scenarios ... 184
The Fight against PMTUD, and Its Fallout .. 186

Food for Thought .. 186

12
STACK DATA LEAKS 189
Yet another short story on where to find what we did not intend to send out at all

Kristjan’s Server ... 189
Surprising Findings ... 190
Revelation: Phenomenon Reproduced ... 191
Food for Thought .. 192

13
SMOKE AND MIRRORS 193
Or how to disappear with grace

Abusing IP: Advanced Port Scanning .. 194
Tree in the Forest: Hiding Yourself ... 194
Idle Scanning ... 195

Defense against Idle Scanning ... 197
Food for Thought .. 198

14
CLIENT IDENTIFICATION: PAPERS, PLEASE! 199
Seeing through a thin disguise may come in handy on many occasions

Camouflage .. 200
Approaching the Problem ... 201
Towards a Solution .. 201

A (Very) Brief History of the Web ... 202
A HyperText Transfer Protocol Primer .. 203
Making HTTP Better .. 205

Latency Reduction: A Nasty Kludge ... 205
Content Caching ... 207
Managing Sessions: Cookies .. 209
When Cookies and Caches Mix ... 210
Preventing the Cache Cookie Attack .. 211

Uncovering Treasons .. 211
A Trivial Case of Behavioral Analysis .. 212
Giving Pretty Pictures Meaning ... 214
Beyond the Engine 215
. . . And Beyond Identification .. 216
xvi Contents in Detai l

Prevention ... 217
Food for Thought .. 217

15
THE BENEFITS OF BEING A VICTIM 219
In which we conclude that approaching life with due optimism may help us track down
the attacker

Defining Attacker Metrics .. 220
Protecting Yourself: Observing Observations ... 223
Food for Thought .. 224

PART IV: THE BIG PICTURE
Our legal department advised us not to say “the network is the computer” here

16
PARASITIC COMPUTING, OR HOW PENNIES ADD UP 227
Where the old truth that having an army of minions is better than doing the job yourself
is once again confirmed

Nibbling at the CPU ... 228
Practical Considerations .. 231
Parasitic Storage: The Early Days ... 232
Making Parasitic Storage Feasible .. 234
Applications, Social Considerations, and Defense .. 241
Food for Thought .. 242

17
TOPOLOGY OF THE NETWORK 243
On how the knowledge of the world around us may help track down friends and foes

Capturing the Moment .. 244
Using Topology Data for Origin Identification .. 245
Network Triangulation with Mesh-Type Topology Data .. 248
Network Stress Analysis .. 248
Food for Thought .. 251

18
WATCHING THE VOID 253
When looking down the abyss, what does not kill us makes us stronger

Direct Observation Tactics ... 254
Attack Fallout Traffic Analysis .. 256
Contents in Detai l xvii

Detecting Malformed or Misdirected Data ... 259
Food for Thought .. 260

CLOSING WORDS 261
Where the book is about to conclude

BIBLIOGRAPHIC NOTES 263

INDEX 269
xviii Contents in Detai l

F O R E W O R D

What does it take to write a novel book on computer security? Or rather,
what does it take to write a novel on modern computing?

A young yet highly experienced author with talents in many areas includ-
ing many aspects of computing, mathematics, and electronics (and perhaps a
hobby in robotics), as well as other seemingly unrelated interests (including,
let’s say, fatalistic erotic photography), and indeed with a talent and desire to
write.

Once upon a time in a dark and largely unexplored forest, the
magic chemistry of (brain cell) trees gave birth to a bit of
information, only to let him sail his way down a quick river,
into the vast sea (of the Internet), and ultimately find his new
home, grave, or maybe a place in a museum.

And so the tale begins. Whether our little bit is good or evil,
at a young age he will reach the stream flowing into a shiny
castle made out of white-colored foil (yet regarded by many as a
black box). He will pass through the entrance and approach the
counter to check in. If he weren’t so naive and short-sighted, he
could notice a group of evil-looking bits staring at the counter
from a distance, taking note of the time bits check in and out; he
would have no choice but to proceed to sign in, though.

Once rested, our hero might be asked to team up with his
siblings or to join a group of other bits and bitesses, and together
they would pack their bodies tightly onto a used inflatable boat.
A careful bit could notice bits of garbage (or is that garbage?) in
the boat, presumably left by a previous group.

Observing the traffic lights and squeezing through traffic
jams, our bits enter a safe harbor and sail to the wharf. Will
they be seen from nearby castles and lighthouses? Will someone
track the traffic light switches to determine just when our
group sailed? Will someone turn on lights at the wharf and
take pictures? Will those other evil bits assume the identity of
ours and sail away to the sea first? Our bits wouldn’t know.

And so they change boats at the wharf and sail to the sea . . .
The journey of our pet bits proceeds, with many dangers yet to
come.

No, Michal’s book does not hide technical detail behind a fairy tale as I have
above. Rather, while a very entertaining read, it gets all the facts straight and
promptly gives answers to most challenges introduced at the beginning of
each chapter.

Silence on the Wire is unique in many aspects, but two stand out: First, it
provides in-depth coverage of almost all essential stages of data processing
that enable today’s “internetworking”—from a keypress to the intended
end result of that keypress. Second, it outlines the largely overlooked,
under-researched, and inherent security issues associated with each stage
of networking and with the process as a whole. The security issues covered
serve well to demonstrate the art of vulnerability research from both the
attacker’s and the defender’s perspective, and will encourage further
research on the part of the reader.

Clearly, a computer security book can’t be comprehensive. In SotW,
Michal has provocatively chosen to leave out all the well known yet highly
dangerous and widespread vulnerabilities and attacks being discussed and
worked on today by most in the information security community. He will
teach you about subtle keystroke timing attacks, but you will not be reminded
that “trojan horse” software with key logging capabilities is currently both
more common and easier to use than any of such attacks could ever be.

Why mention keystroke timings while leaving the trojans out? Because
timing attacks are largely underappreciated and misunderstood even by
information security professionals, whereas trojans are a widely known and
obvious threat. Vulnerability to timing attacks is a property of the design of
many components involved, whereas to implant a trojan requires either a
software bug or an end-user error.

Similarly, and with few exceptions, you won’t find the slightest mention
in SotW of the widely exploited software bugs—or even generic software bug
classes such as “buffer overflows.” If you are not already familiar with the
xx Foreword

common computer security threats and would like to gain that knowledge,
you will need to accompany yourself on your journey through this book with
the perusal of less exciting material available on the Internet and in other
books, and in particular with material pertaining to the specific operating
systems that you use.

Why study silence, you may wonder—isn’t that a nothing? Yes, in a sense.
A zero is a nothing in that sense, too. But it is also a number, a concept we
cannot really understand the world without.

Enjoy the silence—the best you can.

Alexander Peslyak
Founder and CTO
Openwall, Inc.

better known as

Solar Designer
Openwall Project leader

January 2005
Foreword xxi

I N T R O D U C T I O N

A Few Words about Me

I seem to have been born a computer geek, but my adventure with network
security began only by accident. I have always loved to experiment, explore
new ideas, and solve seemingly well defined but still elusive challenges that
require innovative and creative approaches—even if just to fail at solving
them. When I was young, I spent most of my time pursuing sometimes risky
and often silly attempts to explore the world of chemistry, mathematics,
electronics, and finally computing rather than ride my bike around the block
all day long. (I probably exaggerate a bit, but my mother always seemed to be
worried.)

Shortly after my first encounter with the Internet (in the mid ’90s,
perhaps eight years after I coded my first “Hello world” program on a
beloved 8-bit machine), I received an unusual request: a spam letter that,
hard to believe, asked me (and a couple thousand other folks) to join an
underground team of presumably malicious, black hat hackers. This did not
drive me underground (perhaps due to my strong instinct for self-
preservation, known in certain circles as cowardice) but somehow provided a
good motivation to explore the field of computer security in more detail.
Having done plenty of amateur programming, I found it captivating to look
at code from a different perspective and to try to find a way for an algorithm
to do something more than it was supposed to do. The Internet seemed a

great resource for the challenges I craved—a big and complex system with
only one guiding principle: You cannot really trust anyone. And so it all
began.

I do not have the background you might expect from the usual computer
security specialist, a profession that is becoming commonplace today. I have
never received any formal computer science education, nor do I hold an
impressive-sounding set of certifications. Security has always been one of my
primary passions (and is now my living). I am not the stereotypical computer
geek—I do get up once in a while to look at my work from a sane distance or
to get away from computers altogether.

For good or bad, all this has affected the shape of this book and its
message. My goal is to show others how I view computer security, not how
it is usually taught. For me, security is not a single problem to be solved
nor a simple process to follow. It is not about expertise in a specific field.
It is an exercise in seeing the entire ecosystem and understanding its every
component.

About This Book

Even in the dim light of our monitors, we are still only humans. We were
taught to trust others, and we do not want to be too paranoid. We need
to find a sensible compromise between security and productivity to live
comfortably.

The Internet is, nevertheless, different from a real-world society. There is
no common benefit from conforming to the rules, and there is seldom any
remorse for virtual misdeeds. We cannot simply trust the system, and our
attempts to come up with a single rule that can be applied to all problems
will fail miserably. We instinctively draw a straight line to separate “us” from
“them” and call our own island safe. Then, we look out for rogue ships on
the horizon. Soon, security problems start to appear as localized abnor-
malities that can be easily defined, diagnosed, and resolved. From that
perspective, attackers appear to be driven by clear motives, and if we are
vigilant, we can see them and stop them as they approach.

Yet, the virtual world is quite different: security is not the absence of
bugs; safety does not lie in being beyond the reach of attackers. Just about
any process involving information has inherent security implications, which
are visible to us the moment we look beyond the scope of the goal the process
tries to achieve. The art of understanding security is simply the art of being
able to cross the line and look from a different perspective.

This is an unconventional book, or so I hope. It is not a compendium of
problems or a guide to securing your systems. It begins with an attempt to
follow the story of a piece of information, from the moment your hands touch
the keyboard, all the way to the remote party on the other end of the wire. It
covers the technology and its security implications, focusing on problems that
cannot be qualified as bugs, with no attacker, no flaw to be analyzed and
resolved, or no detectable attack (or at least not one that we can distinguish
xxiv In t roduct ion

from legitimate activity). The goal of this book is to demonstrate that the
only way to understand the Internet is to have the courage to go beyond
the specifications or read between the lines.

As the subtitle suggests, this book focuses on privacy and security prob-
lems inherent to everyday communications and computing. Some of them
have profound implications, while others are simply interesting and stimu-
lating. None will have an immediate damaging impact on your environment
or destroy the data on your disk drive. The information here is useful and
valuable to IT professionals and seasoned amateurs who want to be challenged
to exercise their minds and who want to learn about the nonobvious conse-
quences of design decisions. This is a book for those who want to learn how
to use these subtleties to take control of their environment and gain an
advantage over the world outside.

The book is divided into four sections. The first three cover stages of data
flow and technologies deployed there. The last section focuses on the network
as a whole. Every chapter covers relevant elements of the technology used to
process the data at each stage, a discussion of security implications, a demon-
stration of its side-effects, suggestions on how to address the problems (if
possible), and recommendations for how to further explore the subject. I do
my best to avoid charts, tables, pages of specifications, and so forth (though
you will find numerous footnotes). Since you can easily find plenty of good
reference materials online, my focus is on making this book simply enjoyable.

Shall we begin?
In t roduct ion xxv

PART I
T H E S O U R C E

On the problems that surface long before one sends
any information over the network

I C A N H E A R Y O U T Y P I N G
Where we investigate how your keystrokes can be monitored

from far, far away

From the moment you press the first key on your
keyboard, the information you are sending begins a
long journey through the virtual world. Microseconds
before packets speed through fiber-optic links and
bounce off satellite transceivers, a piece of information
goes a long way through an amazing maze of circuits.
Prior to your keystrokes being received by the opera-
ting system and any applications it might be running, many
precise and subtle low-level mechanisms are engaged in a process that is of
interest to all sorts of hackers and has proven to be of significance to the
security crowd as well. The path to user land has many surprises lurking
along the way.

This chapter focuses on these early stages of moving data and on the
opportunities that arise for your fellow (and possibly naughty) users to find
out way too much about what you are doing in the comfort of your own
terminal.

A prominent example of a potential information disclosure scenario
related to the way a computer processes your input is associated with a
subject that, at first glance, appears to be unrelated at best: the difficult task
of producing random numbers on a machine that behaves in a fully predic-
table manner. It is difficult to imagine a less obvious connection, yet the
problem I mention is very real, and may allow a sneaky observer to deduce
much of a user’s activity, from his passwords to private email that he is typing.

The Need for Randomness

Computers are completely deterministic. They process data in a way that is
governed by a well-defined set of laws. Engineers do their best to compensate
for imperfections associated with the manufacturing process and the prop-
erties of the electronic components themselves (interference, heat noise,
and so on), all to ensure that the systems always follow the same logic and
work properly; when, with time and stress, components refuse to act as
expected, we consider the computer to be faulty.

The ability of machines to achieve this level of consistency, combined
with their marvelous calculation capabilities, is what makes computers such a
great tool for those who manage to master and control them. Naturally, one
thing has to be said: not all is roses, and those who complain of computers
being unreliable are not all that mistaken. Despite the perfect operation of
the equipment, computer programs themselves do misbehave on various
occasions. This is because even though computer hardware can be and often
is consistent and reliable, you typically can’t make long-term predictions
about the behavior of a sufficiently complex computer program, let alone a
complex matrix of interdependent programs (such as a typical operating
system); this makes validating a computer program quite difficult, even
assuming we could come up with a detailed, sufficiently strict and yet flawless
hypothetical model of what the program should be doing. Why? Well, in
1936, Alan Turing, the father of modern computing, proved by reductio ad
absurdum (reduction to the absurd) that there can be no general method for
determining an outcome of any computer procedure, or algorithm, in a
finite time (although there may be specific methods for some algorithms).1

This in practice means that while you cannot expect your operating system
or text editor to ever behave precisely the way you or the author intend it to,
you can reasonably expect that two instances of a text editor on systems
running on the same hardware will exhibit consistent and identical behavior
given the same input (unless, of course, one of the instances gets crushed by a
falling piano or is otherwise influenced by other pesky external events). This is
great news for software companies, but nevertheless, in some cases we, the
security crowd, would prefer that the computer be a bit less deterministic. Not
necessarily in how it behaves, but in what it can come up with.

Take data encryption and especially that mysterious beast, public key
cryptography. This novel and brilliant form of encryption (and more), first
proposed in the 1970s by Whitfield Diffie and Martin Hellman, and shortly
4 Chapter 1

thereafter turned into a full-blown encryption system by Ron Rivest, Adi
Shamir, and Len Adleman, is based on a simple concept: some things are
more difficult than others. That seems obvious, of course, but just throw in
several higher math concepts, and you’re all set for a groundbreaking
invention.

Traditional, symmetrical cryptography called for an identical shared
“secret” value (a key) to be distributed among all parties involved in a secret
communication. The key is required and sufficient to encrypt and later
decrypt the information transferred, so that a third-party observer who
knows the encryption method still cannot figure out the message. The need
for a shared secret made the entire approach not always practical in terms of
computer communications, primarily because the parties had to establish a
secure exchange channel prior to communicating; transferring the secret
over a nonsecure stream would render the scheme vulnerable to decryption.
In the world of computers, you often communicate with systems or people
you have never seen before and with whom you have no other affordable and
secure communication channel.

Public key cryptography, on the other hand, is not based on a shared
secret. Each party holds two pieces of information: one (the public key)
useful for creating an encrypted message, but next to useless for decryption,
and the other (the private key) useful for decrypting a previously encrypted
message. The parties can now exchange their public keys using an insecure
channel even if it is being snooped. They provide each other with the
information (meaningless to an observer) needed to encrypt messages
between parties, but they keep the portion needed to access the encrypted
data private. All of a sudden, secure communications between complete
strangers—such as a customer sitting on a sofa in his apartment and an
online shopping server—became closer to reality.

Fundamentally, the original RSA (Rivest, Shamir, and Adleman) public
key cryptosystem is based on the observation that the computational
complexity of multiplying two arbitrarily large numbers is fairly low; it is
directly proportional to the number of digits to be multiplied. On the other
hand, the complexity of finding factors (factorization) of a large number is
considerably higher, unless you are a mythical crypto-genius working for the
National Security Agency. The RSA algorithm first chooses two arbitrary, very
large primes,* p and q, and multiplies them. It then uses the product along
with a coprime,† (p-1)(q-1), to construct a public key. This key can be used to
encrypt information, but it alone is not sufficient to decrypt that information
without resorting to factorization.

And the catch: Factorization of products of two large prime numbers is
often impractical, foiling such attacks. The fastest universal integer factoriza-
tion algorithm on traditional computers, general number field sieve (GNFS),
would require over a thousand years to find factors of such a 1,024-bit

* A prime number is a positive integer that divides only by 1 and itself.
† A number that is coprime to x (also called relatively prime to x) shares no common factors with x,
other than 1 and -1. (Their greatest common divisor is 1.)
I Can Hear You Typing 5

integer, at a rate of one million tests per second. Finding two primes that
yield a product that big is, on the other hand, a matter of seconds for an
average PC.

As indicated before, in RSA, in addition to your public key, you also
produce a private key. The private key carries an additional piece of
information about the primes that can be used to decrypt any information
encrypted with your public key. The trick is possible, thanks to the Chinese
Remainder Theorem, Euler’s Theorem, and other somewhat scary but
fascinating mathematical concepts a particularly curious reader may want
to explore on his own.2

Some other public key cryptosystems that rely on other hard problems
in mathematics were also devised later on (including elliptic curve crypto-
systems and so on), but all share the underlying concept of public and
private keys. This method has proved practical for securing email, web
transactions, and so forth, even if two parties have never communicated and
do not have a secure channel to exchange any additional information prior
to establishing a connection.* Almost every encryption design that we use
everyday, from Secure Shell (SSH) and Secure Sockets Layer (SSL) to digi-
tally signed updates or smart cards, are here thanks to the contributions of
Diffie, Hellman, Rivest, Shamir, and Adleman.

Automated Random Number Generation

There is only one problem: When implementing RSA on a deterministic
machine, the first step is to generate two very large primes, p and q. It is
simple for a computer to find a large prime, but there is a tiny issue: the
primes also must be impossible for others to guess, and they cannot be the
same on every machine. (If they were, the attack on this algorithm would not
require any factorization, and p and q would be known to anyone who owns a
similar computer.)

Many algorithms have been developed over the past few years to quickly
find prime number candidates (pseudo-primes) and to perform rapid
preliminary primality tests (used to verify pseudo-primes).3 But to generate a
truly unpredictable prime, we need to use a good dose of entropy or ran-
domness in order to either blindly choose one of the primes within a range,
or start at a random place and pick the first prime we stumble upon.

Although the need for some randomness at the time of key generation is
essential, the demand does not end there. Public key cryptography relies on
fairly complex calculations and is thus fairly slow, particularly when com-
pared with the traditional symmetric key cryptography that uses short shared
keys and a set of operations machines that are known to execute very fast.

* For the sake of completeness, it should be noted that ad-hoc public key cryptography is, among
other things, vulnerable to “man in the middle” attacks, where an attacker impersonates one of the
endpoints and provides its own, fake public key, in order to be able to intercept communications.
To prevent such attacks, additional means of verifying the authenticity of a key must be devised,
either by arranging a secure exchange or establishing a central authority to issue or certify keys
(public key infrastructure, PKI).
6 Chapter 1

To implement functionality such as SSH, in which reasonable perfor-
mance is expected, it is more sensible to establish the initial communication
and basic verification using public key algorithms, thus creating a secure
channel. The next step is to exchange a compact, perhaps 128-bit symmetric
encryption key and continue communicating by switching to old-style sym-
metric cryptography. The main problem with symmetric cryptography is
remedied by creating an initial (and slow) secure stream to exchange a
shared secret, and then switching to faster algorithms, hence enabling the
user to benefit from the higher performance without sacrificing security. Yet,
to use symmetric cryptography in a sensible way, we still need to use a certain
amount of entropy in order to generate an unpredictable symmetric session
key for every secured communication.

The Security of Random Number Generators

Programmers have invented many ways for computers to generate seemingly
random numbers; the general name for these algorithms is pseudorandom
number generators (PRNGs).

PRNGs suffice for trivial applications, such as generating “random”
events for computer games or meaningless subject lines for particularly
obtrusive unsolicited bulk mailings. For instance, take the linear congruent
(aka power residue) generator,4 a classic example of such an algorithm.
Despite its obscure name, this random number generator performs a
sequence of simple operations (multiplication, addition, and modulus*)
every time it generates its “random” output. The generator uses its previous
output rt to calculate the next output value, rt+1 (where t denotes time):

 mod M

The modulo operator controls the range and prevents overflows, a
situation that occurs when the result at some point goes beyond the pre-
defined range of values. If r0, a, M, and c—a set of control variables for the
generator—are all positive integers, all results of this equation fall in the
range of 0 to M-1.

Yet, while the output of this algorithm may, with some fine-tuning,
exhibit statistical properties that make it suitable for generating random
number lookalikes, nothing is genuinely unpredictable about its operations.
And therein lies the problem: An attacker can easily develop their own copy
of the generator and use it to determine any number of results that our
generator will produce. Even if we start with an initial generator state (r0)
that is unknown to the attacker, they can often successfully deduce important
properties of this value by observing subsequent outputs of the victim’s
generator and then use this knowledge to tweak their version of it to mimick
ours. In fact, a general method to reconstruct and predict all polynomial

* The modulo operator returns the remainder of an integer division of two numbers. For
example, 7 is divided by 3 yielding an integer result of 2 and a remainder of 1 (7 = 2 * 3 + 1); 7
modulo 3 is thus 1.

rt 1+ a rt c+ =
I Can Hear You Typing 7

congruent generators was devised over a decade ago,5 and it would be quite
unwise to ignore this little, perhaps somewhat inconvenient detail, as it
creates a gaping hole in this algorithm when used for mission-critical
purposes.

Over time, we have realized that the only sane way for a computer to
produce practically unpredictable data, short of suffering a massive memory
failure or processor meltdown, is to try to gather as much practically
unpredictable information from its physical surroundings as possible and
then use that as a value passed to any application that demands good
randomness. The problem is, an average computer has no “senses” with
which it could probe the environment for seemingly random external
signals. Nevertheless, we know a fairly good way to work around this
inconvenience.

I/O Entropy: This Is Your Mouse Speaking

On almost every computer system, external devices communicate relevant
asynchronous events, such information being made available from the
network card or the keyboard, using a hardware interrupt mechanism. Each
device has an assigned hardware interrupt (IRQ) number and reports
important developments by changing the voltage on a designated hardware
line inside the computer, corresponding to this particular IRQ. The change
is then interpreted by a device called a programmable interrupt controller (PIC),
which serves as a personal butler for the main processor (or processors).

Once instructed by the CPU, the PIC decides if, when, how, and with
what priority to deliver requests from the external devices to the main unit,
which makes it easier for the processor to manage events in an efficient and
reliable manner. Upon receipt of a signal from the PIC, the processor
postpones its current task, unless of course the CPU had chosen to ignore all
interrupt requests at the moment (if it’s really busy). Next, it invokes a code
assigned by your operating system to handle feedback from this device or
group of devices. Once the program handles the event, the CPU restores the
original process and its context—the information about the state of its
environment at the time of the interruption—and continues as if nothing
has happened.

Delivering Interrupts: A Practical Example

In practice, many additional steps are involved in detecting an external
condition and then generating and receiving an IRQ. For example, Figure 1-1
shows the sequence of events triggered by pressing or releasing a key on the
keyboard. Before you even touch a single key, a tiny microcontroller chip
inside your keyboard, serving as a keyboard controller, is busy sweeping the
keyboard for any changes to its state.
8 Chapter 1

Figure 1-1: Keyboard-to-computer communications

The keyboard is organized as an array of horizontal and vertical wires.
Keys (microswitches or pressure-sensitive membrane switches) are installed
at the intersection of each row and column. The controller tests every row
and column separately, at very high speed.

If, for example, the keyboard controller detects a closed circuit when
testing row 3, column 5 (which is signified by low resistance when voltage is
applied to these lines), it concludes that the key at this particular location (J)
is pressed. When the keyboard controller senses a change, it converts row
and column coordinates into a scan code, a value that identifies a key by its
unique identifier. The scan code information is then queued in the internal
buffer of a chip, which then tells the CPU that there’s new data and goes
back to minding its own business.

An input controller chip is the keyboard controller’s counterpart on the
motherboard. The input controller usually handles all basic input devices,
such as the mouse and keyboard. It receives a single scan code from the
keyboard chip and signals an appropriate interrupt to the CPU’s butler, the
PIC. As soon as the PIC determines that it can deliver this particular IRQ, the
PIC passes this signal to the processor, which then usually interrupts its
current task and invokes the interrupt handler installed by the operating

On-board input
device controller

IRQ request
(4)

Interrupt controller

To the operating system and
user applications

Input device
controller

Read acknowledgement
(7)

(6)
Scan code

(9)

Confirmation (EOI) (8)

(5) IRQ 1

Scan code data (3)

Data available (1)
Keyboard
controller

8048

(2) Read request 8042

8259

8042

MAIN PROCESSOR
(invokes OS routine

on IRQ)
I Can Hear You Typing 9

system. The handler is expected to read the data and to tell the chip that it
has read the scan code successfully. The input controller then resumes its
normal operations and eventually reads another scan code from the
keyboard if there is any data in the buffer.*

This scheme is important to random number generation, although its
significance is indirect. The computer, using the asynchronous event
notification scheme (interrupts), receives almost instantaneous and precise
feedback about user activity—perhaps most interestingly, accurately
measured delays between keystrokes. Although the information is not always
unpredictable, it is perhaps the best source of external, measurable, somewhat
indeterministic signal the machine can get. And so, in order to work around
the deterministic nature of the computer and to insert randomness in their
calculations, authors of secure PRNG implementations resort to gathering
entropy from generally unpredictable behavior of certain devices, such as the
mouse, keyboard, network interfaces, and sometimes disk drives. To do so,
they add an extra code inside an interrupt handler for the operating system
that records certain parameters for every acceptable event.

Although it can be argued that neither of those sources provide truly
random feedback all the time—for example, it is likely that after the user types
aardva, the next two characters are going to be rk—some of the behavior, such
as my thinking of aardvarks to begin with, is indeed rather unpredictable, from
a practical standpoint (and not getting into an academic discussion of free will
and deterministic universes). This method of adding entropy works reason-
ably well because it incorporates several factors that cannot be reasonably
considered and monitored or predicted by an attacker while still maintaining
their sanity. By gathering data from all those sources for an extended period
of time, the laws of probability tell us that we will collect a certain amount of
entropy. By collecting the data in a buffer, we construct an entropy pool that
can be full or depleted, depending on the supply and demand for unpredict-
able data. Unfortunately, these small bits of randomness within the pool—
where our typing was influenced by cosmic events—is still mixed with plenty
of easily predictable data and as such can’t be immediately used for random
number generation.

To ensure that the amount of actual entropy collected in the process of
maintaining and replenishing the entropy pool is spread evenly over all
PRNG output bits (with all unpredictable data expended), the pool has to be
hashed; that is, it has to be stirred and mixed throughly so that no section of
the data is easier to predict than any other. Every bit of the output must
depend equally on all the input bits, in a nontrivial way. Achieving this
without knowing which pieces of information are predictable and which are
not (information that is not readily available to a computer monitoring
keystrokes or mouse movements) can be a difficult task.

* On many architectures, it is necessary to manually instruct the PIC that the interrupt has been
processed and that it should no longer block subsequent interrupts. This is done with the End of
Interrupt (EOI) code.
10 Chapter 1

One-Way Shortcut Functions
Luckily enough, secure one-way hashing (“message digest”) functions, a
flagship product of modern cryptography, can assist us with mixing data to
get the most entropy into every bit of output, regardless of how nonuniform
the input. These are functions that generate a fixed-length shortcut: a
unique identifier of an arbitrary block of input data. But that is not all.

All one-way hashing functions have two important properties:

 It is easy to calculate the shortcut, but not possible to deduce the original
message or any of its properties from the result. Any specific change to
the message is just as likely to affect all properties of the output as any
other change.

 The likelihood of two distinct messages having the same shortcut is deter-
mined only by the size of the shortcut. With a sufficiently large shortcut
(large enough to make exhaustive searches impractical, nowadays set at
around 128 to 160 bits, or circa 3.4E+38 to 1.46E+48 combinations), it is
not possible to find two messages that would have the same shortcut.

As a result, shortcut functions provide a means for distributing entropy
present in the input data in a uniform way over the output data. This solves
the problem with generally random but locally predictable entropy sources:
we gather an approximate amount of entropy from the environment, mixed
with predictable data or not, and can generate a shortcut that is guaranteed
to be just as unpredictable as the entropy collected in the first place, regard-
less of how the input entropy was distributed in the input data.

How do shortcut functions work? Some again rely on mathematical
problems that are, as far as we know, very difficult to solve. In fact, any safe
symmetrical or public key cryptography algorithm can be easily turned into
a secure hashing function. As long as humanity does not come up with a
really clever solution to any of these problems, relying on this approach
should be fine.

Yet, by rolling out heavy artillery, we end up with slow and overly com-
plicated tools to generate shortcuts, which is often impractical for compact
implementations, particularly when integrating such a solution with an
operating system. The alternative is to process the data so that the inter-
dependency between all bits of input and output is sufficiently complex so
as to fully obfuscate the input message and hope this is “good enough” to
stop known cryptoanalysis techniques. Because “hopefully good enough” is
actually the motto for a good chunk of computer science, we gladly accept
this as a reasonable approach.

The advantage of the latter group of algorithms, which includes popular
functions such as MD2, MD4, MD5, and SHA-1, is that they are generally
much faster and easier to use than their counterparts based on difficult
mathematical challenges and, when well designed, are not susceptible to
cryptoanalysis tricks of the trade. Their weakness is that they are not provably
secure because none of them reduces to a classic, hard-to-solve problem.
Indeed, some have been proved to have specific weaknesses.6
I Can Hear You Typing 11

As suggested earlier, a great service of shortcut functions to pseudo-
random number generation is that they can be run on a segment of data that
contains n random bits, and any number of predictable bits, to produce a
shortcut that will spread n bits of entropy evenly across all bits of the shortcut
(thanks to the two fundamental one-way shortcut function properties
discussed earlier). As a result, the shortcut function becomes a convenient
entropy extractor. By running a sufficient amount of data collected from a
generally unpredictable interrupt handler through a shortcut function, we
can generate random numbers without disclosing any valuable information
about the exact shape of the information used to generate the number, and
without the risk of imperfect input affecting the output in any meaningful
way. All we need to do is to ensure that there is a sufficient amount of
entropy collected and feed into a shortcut function within a chunk of
interrupt data, else we risk compromising the entire scheme. If the attacker
can predict considerable portions of the data we use for random number
generation, and the remainder has only a handful of possible combinations,
they can throw a successful brute-force attack against our implementation by
simply trying and verifying all possible values. If, for example, we use a
shortcut function that produces 128-bit digests, no matter how much data we
actually collected, be it 200 bytes or 2 megabytes worth of keyboard tapping,
we must be sure that at least 128 of these input bits are unpredictable to the
attacker before hashing it.

The Importance of Being Pedantic

As an example of when things can go wrong, consider a user who decides to
write a shell script when a system entropy pool is empty, perhaps due to some
random number-hungry operation that was performed a while ago. The
attacker notices that the user is writing a script because vi delallusers.sh is
being executed; they further assume that the script must have started with
something along the lines of #!/bin/sh. Although they cannot be sure what is
coming next, they can reasonably expect that the script will open with an
invocation of a shell command and that it is somewhat less likely to continue
with a tacky poem about aardvarks.

At this point, an encryption utility of some kind suddenly asks the
system for a 128-bit random number to be used as a session key to protect
communications. However, the system fails to correctly estimate the
amount of entropy available in the buffer that recorded the process of
writing the first lines of the script, and the attacker now has an easy task.
The computer is devoid of the information whether this particular action
performed by the user at the very moment is predictable to others or not.
It can only speculate (aided by the assumptions made by the programmer)
that, over the course of a couple of minutes or hours, users’ actions will
sum up to something that could not be precisely predicted and that, on
average, this much of the input indeed would depend on factors unpre-
dictable to the attacker.
12 Chapter 1

The attacker, at this point, knows most of the entropy pool contents and
is left with barely thousands of options to choose from when it comes to the
unknown part—despite the fact that the operating system is convinced that
there is far more entropy in the buffer. These thousands are hardly a big
challenge for someone assisted by a computer. Consequently, instead of
getting a 128-bit random number, which has a 39-digit number of combina-
tions, an unsuspecting cryptography application ends up with a number
generated from input that could have been only one of a couple thousand of
options, easily verifiable by the attacker by trial and error, and the attacker
can soon decrypt the information that was supposed to remain secure.

Entropy Is a Terrible Thing to Waste

Because it is next to impossible to accurately predict the amount of entropy
collected from a user in a short run, in order to prevent the predictable
PRNG output problem discussed previously, all implementations include the
shortcut or internal PRNG state in the process of generating new output.
The previous output becomes a part of the equation used to calculate the
next PRNG value.

In this design, once a sufficient amount of entropy is initially gathered in
the system, the most recent data used to replenish the entropy pool does not
need to be fully random at all times in order to ensure basic security.

Yet, there is another problem. If the implementation runs for a prolonged
period of time on old, inherited entropy, only hashed again and again with
MD5 or SHA-1, it becomes fully dependent on the security of the shortcut
algorithm, which cannot be completely trusted due to the performance and
security trade-off discussed before. Moreover, the hashing functions have not
necessarily undergone an appropriate evaluation of suitability for this parti-
cular use from competent cryptographers. The implementation no longer
relies simply on the bit hashing properties of a shortcut function and now
fully depends on its invulnerability to cracking attacks. If, with every subse-
quent step, a small amount of information about the internal state of the
generator is disclosed, and no new unpredictable data is added to the pool,
in the long run, the data may suffice to reconstruct or guess the internal
state with reasonable certainty, which makes it possible to predict the
future behavior of the device. On the other hand, if new random data is
added at a rate that, at least statistically, prevents a significant reuse of the
internal state, the attack becomes much less feasible even if the hashing
function is fundamentally broken.

Many experts believe this level of trust and reliance on the hashing
function should not be exercised for the most demanding applications.
Hence, it is important for an implementation to keep track of an estimated
amount of entropy collected in the system, which, even if not momentarily
correct, reflects a general statistical trend we would expect from the sources
used. Minor short-term fluctuations in the availability of external entropy,
such as the script editing example discussed previously, may occur and will
I Can Hear You Typing 13

be compensated for by the output reuse algorithm. Still, it is necessary to
make accurate long-term predictions to ensure frequent replenishing of the
internal entropy pool and to minimize exposure should the hashing function
turn out to leak internal state over time. As such, the implementation has to
account for all entropy spent in data supplied to user processes and refuse to
supply more random numbers until a sufficient amount of entropy is available.

A good example of a proper PRNG implementation that takes all the
above into account is the excellent system devised and implemented in
1994 by Theodore Ts’o of the Massachusetts Institute of Technology. His
mechanism, /dev/random, was first implemented in Linux and later
introduced to systems such as FreeBSD, NetBSD, and HP/UX. Ts’o’s
mechanism monitors a number of system I/O events, measuring time
intervals and other important interrupt characteristics. It also preserves the
entropy pool during system shutdowns by saving it to disk, which prevents
the system from booting up to a fully predictable state, making it even
more difficult to attack.

Attack: The Implications of a Sudden Paradigm Shift

What could be the problem with this seemingly fool-proof scheme for
supplying unpredictable random numbers to demanding applications?
Nothing, at least not where you would expect it. The numbers generated are
indeed difficult to predict.

There is, however, one slight but disastrous mistake in the reasoning of the
designer of this technology. Mr. Ts’o’s design assumes that the attacker is inter-
ested in predicting random numbers based on knowledge of the machine and
its environment. But what if the attacker wants to do quite the opposite?

The attacker with an account on the machine, even though they have no
direct access to the information the user is typing, can deduce the exact
moment input activity is occurring in the system by emptying the entropy
pool (which can be achieved by simply requesting random data from the
system and discarding it) and then monitoring the availability of PRNG
output. If there is no I/O activity, the PRNG will not have any new data
available, because the entropy estimate won’t change. If a keystroke or a key
release occurs, a small amount of information will be available to the
attacker, who may then deduce that a key was pressed or released.

Other events, such as disk activity, also generate some PRNG output, but
the amount and timing patterns of entropy gathered this way differ from the
characteristics of keyboard interrupt data. As such, it is possible and easy to
discern events by the amount of data available at any given time. The data
from keystrokes will look different from the data from disk activity.

In the end, a method for assuring the highest possible level of safety for
secure random number generation actually results in degrading the privacy of
the user: the availability of this mechanism to estimate the amount of entropy
available from an external source can be abused and used to monitor certain
aspects of input activities on the system. Although the attacker cannot detect
14 Chapter 1

exactly what is being typed, there are strong timing patterns for writing
different words on the keyboard, especially if precise key press and release
information is present, as it is in this case. By examining those patterns, the
attacker can deduce the actual input, or at least guess it more easily.

A Closer Look at Input Timing Patterns

An in-depth analysis led by a team of researchers at the University of
California7 indicates that it is possible to deduce certain properties of user
input, or even fully reconstruct the data, by looking only at inter-keystroke
timing. The research concluded that, for seamless typing and a keyboard-
proficient operator, there might be some variation in inter-keystroke
timings, but dominant timing patterns for each key-to-key transition are
clearly visible.

The reason is that our hands lie on the keyboard a certain way and that
the key position on the keyboard affects how fast we can reach a key with our
fingertips. For example, the interval between pressing e and n is generally
different from the interval between m and l. In the first case, because one
hand controls the left side of the keyboard, and the other controls the right
side (see Figure 1-2), typing both characters requires almost no movement,
and both keys are pressed almost simultaneously, with a time interval of less
than 100 milliseconds. Typing m and l requires a fairly awkward fingering
and takes much longer.

Figure 1-2: The usual territory for each hand. Dark-gray keys are usually controlled by the
left hand, and white areas are controlled by the right hand.

After analyzing a number of samples, the authors of this research
estimate that approximately 1.2 bits of information per key pressed can be
acquired from the timing data. By observing sequence delays, it is possible to
determine the set of keyboard inputs most likely to generate this pattern,
thus making it easier to guess the exact sequence of keys pressed. The idea of
counting fractions of bits may sound ridiculous, but what this really means is
that the number of possibilities for every key can be reduced by 21.2, or
approximately 2.40 times. For a single regular keystroke, which usually
carries no more than 6 bits of randomness to begin with, this reduces the
option set from about 64 to 26 elements.

` 1 2 3 4 5 6 7 8 9 0 - = backspace

tab q w e r t y u i o p []

lock a s d f g h j k l ; ‘ # return

shift shift\ z x c v b n m , . /

ctrl ctrlalt altspace
I Can Hear You Typing 15

The net effect is that this reduces the level of search space; we can see that
there’s a way to limit the number of possibilities if we want to guess at what keys
are being typed. Although this reduction may not be particularly impressive on
its own, add to this that the data entered from the keyboard is not likely to be
just random garbage to start with. The entropy of English text is estimated to
be as low as 0.6 to 1.3 bits per character,8 meaning that it on average takes
approximately 1.5 to 2.5 attempts to successfully predict the next character.
With a method to further reduce the search space, it is possible to find
nonambiguous dictionary word matches for almost all the input data.

To verify their estimates and demonstrate the issue in practice, the
researchers used the Hidden Markov Model and Viterbi algorithm to guess
keystrokes. A Markov Model is a method for describing a discrete system in
which the next value depends only on its current state, and not on the
previous values (Markov chain). The Hidden Markov Model is a variant that
provides a method for describing a system for which each internal state
generates an observation, but for which the actual state is not known. This
model is commonly used in applications such as speech recognition, in
which the goal is to obtain pure data (a textual representation of the spoken
word) from its specific manifestation (sampled waveform).

The authors conclude that the Hidden Markov Model is applicable to
keystroke analysis, and they consider the internal state of the system to be the
information about keys pressed; the observation in the Hidden Markov
Model is the inter-keystroke timing.

It might be argued that this is an oversimplification, because, most notably
in the situation pictured in Figure 1-3, there might be a deeper dependency.

Figure 1-3: The need to move the left hand to a different position in the previous step affects
the P-V timing. The Markov Model is unable to take a previous location of the hand on
hand-switch scenarios into account.

` 1 2 3 4 5 6 7 8 9 0 - = backspace

tab q w e r t y u i o p []

lock a s d f g h j k l ; ‘ # return

shift shift\ z x c v b n m , . /

ctrl ctrlalt altspace

` 1 2 3 4 5 6 7 8 9 0 - = backspace

tab q w e r t y u i o p []

lock a s d f g h j k l ; ‘ # return

shift shift\ z x c v b n m , . /

ctrl ctrlalt altspace

Initial state User presses “W” key

` 1 2 3 4 5 6 7 8 9 0 - = backspace

tab q w e r t y u i o p []

lock a s d f g h j k l ; ‘ # return

shift shift\ z x c v b n m , . /

ctrl ctrlalt altspace

` 1 2 3 4 5 6 7 8 9 0 - = backspace

tab q w e r t y u i o p []

lock a s d f g h j k l ; ‘ # return

shift shift\ z x c v b n m , . /

ctrl ctrlalt altspace

User presses “P” key User presses “V” key
16 Chapter 1

The Viterbi algorithm is one way to solve Hidden Markov Model
problems. The algorithm can be used to find the most likely sequence of
internal states based on a sequence of observations. In this particular case,
we use it to determine the most likely sequence of characters based on a
sequence of timings.

The final result of applying the Viterbi algorithm is a reduction of the
search space for nondictionary eight-character passwords by a factor of 50.
For reconstruction of typed dictionary-based English text, the factor is likely
to be considerably higher.

Now let’s look at interrupt monitoring. The research we’ve just discussed
focused on partial information available by snooping on Secure Shell (SSH)
traffic patterns. In the case of interrupt monitoring, the attacker has consid-
erably more information available. For one thing, keystroke duration infor-
mation is available as well as inter-keystroke timings, with the duration of a
single keystroke depending on the finger used. For example the index finger
usually makes the shortest contact with the key, the ring finger is probably
the slowest, and so on. This is valuable information, which makes it much
easier to locate an approximate area of keys on the keyboard.

Second, the data also enables the attacker to monitor hand transitions, the
moment when the first character is typed by the left hand, and the second by
the right hand, or vice versa. Because each hand is controlled by a different
hemisphere of the brain, almost all proficient keyboard users often press the
second key before releasing the first when switching hands. Although key press
and release events are indistinguishable as such, a particularly short interval of
time between two keyboard events is a clear sign of this phenomenon. In some
rare situations, particularly when the typist is in a hurry, the second key press
occurs not only before the release, but even before the press of the first key.
This results in popular typographic errors such as “teh” instead of “the.”

Figure 1-4 shows a capture of sample keyboard timings. The user types
the word evil. The middle finger of the left hand presses e for a medium
period of time. Then, there is a considerable interval before the typist presses
v due to the need to move the entire hand in order to reach v with the index
finger. (The thumb cannot be used because the spacebar gets in the way.)
“The v is pressed for a short period of time, as is i, with both accessed by the
index finger. There is also a visible overlap: i is pressed before v is released
due to a hand transition. Finally, the ring finger presses l after a while (there
is no need to move the hand), and the contact is quite long.

Figure 1-4: Key press and release timing for hand transitions

Time

e

i

l

v

I Can Hear You Typing 17

Hence, it is reasonable to expect that it is possible to achieve a much
higher success ratio in this attack. (Most of this information was not available
in the scenario discussed in the aforementioned white paper.)

Immediate Defense Tactics

Now that we know the potential for keyboard sniffing, how do we thwart it?
The best way is to employ a separate keyboard entropy buffer of a reasonable
size. The buffer is flushed and passed down to the core PRNG implementation
only after it overflows or after a time interval considerably larger than the usual
inter-keystroke delay (that is, at least several seconds) passes, thus eliminating
the attacker’s ability to measure timing.

With this solution, only two types of information are available to the
attacker. The first results from the flush on overflow procedure and discloses
to the attacker that a number of keys (depending on the buffer size) were
pressed in a measurable period of time, but does not divulge exact key
interval timings. The second possibility is a result of a timed flush sequence,
and informs the attacker that a key or several keys were pressed during a
fixed time frame, but does not provide any information about the number of
events and their precise time of occurrence. The information provided in
this way is of a marginal value for timing attacks and can only be used for
generating general statistics of keyboard activity, the latter not posing a
threat in most multiuser environments.

Hardware RNG: A Better Solution?

A number of today’s hardware platforms implement physical random
number generators, often referred to as TRNGs, or true random number
generators. These devices provide a more reliable way of generating truly
unpredictable data, as opposed to gathering information that is merely
expected to be difficult to predict, and are a recommended way of acquiring
entropy on all machines equipped with this hardware. Two popular solutions,
as of this writing, are integrated circuits developed by Intel and VIA.

Intel RNG is integrated with chip sets such as i810 and uses a conventional
design of two oscillators. The high-frequency oscillator generates a base signal,
which is essentially a pattern of alternating logical states (010101010101...).
The other oscillator is a low-frequency device, working at a nominal rate of
1/100 the frequency of the high-speed oscillator, but its actual frequency is
modulated by a resistor, which serves as a primary source of entropy.

Certain measurable characteristics of a resistor change as a result of
thermal noise and other random material effects. The low-frequency
oscillator is used to drive sampling of the alternating signal at now random
frequencies (falling edge of the oscillator output). The signal, after some
necessary conditioning and “whitening” using von Neumann correction, is
then made available to the outside world. A careful analysis of the design and
18 Chapter 1

actual output of the generator performed by Benjamin Jun and Paul Kocher
of Cryptography Research9 has shown that the quality of the output is
consistently high and that the generator provides an estimated 0.999 bits of
entropy per output bit.

VIA C3 “Nehemiah” RNG is based on a slightly different design that uses a
set of oscillators, but not a separate source of noise, such as a special resistor
hookup. Instead, it relies on the internal jitter of the oscillators, an effect that
can be attributed to a number of internal and external factors and additionally
controlled by a configurable “bias” setting.

In this case, a separate analysis led by Cryptography Research10 indicated
the generator apparently delivers a lower-quality entropy than its counter-
part, ranging from 0.855 to 0.95 bits per output bit. This is a dangerous result
if the RNG output is taken as fully random as-is and used for key generation
or other critical tasks 1:1, because the amount of actual entropy is reduced
accordingly. To solve this problem, we can acquire more data than necessary
from the generator and then run the data via a secure hashing function, such
as SHA-1, to eliminate any eventual bias or entropy deficiency. The solution
is a general good practice for preventing TRNG issues, as long as these unde-
sirable effects are within reasonable limits—that is, each bit still carries some
useful entropy.

Several researchers have also suggested using certain nonspecialized
input devices, such as webcams or built-in microphones, as a source of
entropy: Charge Coupled Device (CCD) sensors in digital cameras tend to
exhibit pixel noise, and a severely overamplified microphone signal is
essentially a good source of random noise. However, there is no universal
method for setting up such a generator due to the differences in circuits of
popular media devices from various manufacturers, and as such the quality
of “random” numbers generated this way cannot be assured. In fact, some
devices pick up seemingly random but fully predictable radio interference or
certain in-circuit signals. Additionally, some devices, in particular CCD
sensors, exhibit static noise patterns. While seemingly random, this noise is
not changing rapidly and may be dangerous to rely on.

Food for Thought

I have decided to omit in-depth discussion of a few interesting concepts, but
these may be a valuable inspiration for further explorations.

Remote Timing Attacks

In theory, it might be possible to deploy the PRNG timing attack over a
network. Certain cryptography-enabled services implement symmetrical
cryptography. After establishing a slower asymmetric stream using public key
infrastructure and verifying both parties, a symmetrical session key is
generated, and both endpoints switch to a faster symmetrical alternative.
I Can Hear You Typing 19

 It might be possible to time keystrokes by causing the application to
exhaust an existing entropy pool in the system to the point that there is
not enough entropy to seed a new session key, but only by a small frac-
tion. The application will then delay generating a symmetrical key until
enough entropy to seed the remainder of a key is available, and this will
occur, among other possibilities, on the next key press or release.

 It is my belief that the attack is more likely to succeed in a laboratory
setup than in any real-world practical application, although my technical
reviewer disagrees with my skepticism, and so, consider it to be merely an
opinion. An interesting analysis from the University of Virginia criticized
the original SSH timing research discussed in the paper mentioned
before on the grounds that network jitter is sufficient to render timing
data unusable, although it is worth noting that if a specific activity is
repeated over time (for example, the same password is entered upon
every login), random network performance fluctuations may very well
average out.11

Exploiting System Diagnostics

Some systems have better ways to recover the keystroke information and
other timing data. After publishing my PRNG timing research, it was pointed
out to me that Linux provides a /proc/interrupts interface that displays
interrupt summary statistics, with the intention of providing some useful
performance data. By examining interrupt counter changes for IRQ 1, it is
possible to obtain the same timing information that is acquired via PRNG,
already filtered of any eventual disk and network activity inclusions, thus
causing a privacy exposure similar to the one discussed before.

Reproducible Unpredictability

Other issues worth considering are related to the PRNG implementation
itself. Buying identical hardware in bulk and installing the same system on
each device is a common practice and can be a problem for servers that do
not experience heavy console activity. There is also a risk of mirroring an
installation using specialized duplication tools and then propagating the
image across a number of servers. In all situations, systems can end up with
low real entropy for perhaps a bit too long.
20 Chapter 1

E X T R A E F F O R T S
N E V E R G O U N N O T I C E D

Where we learn how to build a wooden computer and how to
obtain information from watching a real computer run

The data you entered is now safe in the hands of the
application you chose to run. The program will take its
time deciding what to do with the information, how to
interpret it, and which actions to take next.

In this chapter, we examine the low-level mechanics of data processing
in detail and explore some of the pitfalls that can lurk deep beneath the heat
sink of your processor. We pay particular attention to the information we can
deduce simply by observing how a machine executes given programs and
how much time it takes to complete certain tasks. As a bonus, we’ll also build
a fully functional wooden computer.

Boole’s Heritage

To understand the design of a processor, we must return to the days when
processors had not yet been dreamed of. It all started quite innocently back in
the 19th century, when self-taught mathematician George Boole (1815–64)
devised a simple binary algebra system intended to provide a framework for
understanding and modeling formal calculus. His approach reduced the

fundamental concepts of logic to a set of three, simple algebraic operations
that could be applied to elements representing two opposite states, true and
false. These operations are:

 The disjunction operator, OR. This is true when at least one of its oper-
ands* is true.†

 The conjunction operator, AND. This is only true when all its operands
are true.

 The complement (negation) operator, NOT. This is true when its only
operand is false.

Although simple in design, the Boolean algebraic model turned out to
be a powerful tool for solving logic problems and certain other mathematical
challenges. Ultimately, it made it possible for many brave visionaries to
dream of clever analytic machines that would one day change our daily lives.

Today, Boolean logic is seldom a mystery for the experienced computer
user, but the path from this set of trivial operations to today’s computer
often is. We’ll begin exploring this path by first attempting to capture the
essence of this model at its simplest.

Toward the Universal Operator

The path to simplicity often leads through a seemingly needless level of
complexity—and this case is no exception. To even begin, we must consider
the work of another 19th-century mathematician, Augustus DeMorgan
(1806–71). DeMorgan’s law states that “a complement of disjunction is the
conjunction of complements.” This infamous exercise in obfuscating trivial
concepts has some profound consequences for Boolean logic and,
ultimately, the design of digital circuits.

In plain English, DeMorgan’s law explains that when any (or both) of
two conditions is not satisfied, a sentence that claims that both conditions are
met (or, in other words, a conjunction of conditions occurs) will be false as
well—oh, and vice versa.

The law concludes that NOT OR (a, b) should be logically equivalent to
AND (NOT a, NOT b). Consider a real-world example in which a and b
represent the following:

a = “Bob likes milk”

b = “Bob likes apples”

The two sides of the DeMorgan’s equation can be now written as:

OR (NOT a, NOT b) Bob does NOT like milk OR does NOT like apples

NOT AND (a, b) It is NOT true that Bob likes both milk AND apples

* The operand is something that is operated on by the operator.
† The meaning of logical OR differs from the common English understanding of this term: the
resulting statement remains true both when only one of the OR parameters is true and when all
are. In English, “or” typically means that only one option is true.
22 Chapter 2

Both expressions are functionally equivalent. If it is true that Bob dislikes
either milk or apples, the first expression is true; it is then also true that he
does not like both, which means that the second expression is also true.

Reversing the situation also results in agreement: If it is not true that Bob
dislikes at least one of the choices, he likes both (and the first expression is
false). In that case, it is also not true that he does not like both (and the
second expression is also false).

DeMorgan at Work

To evaluate logic statements beyond appeals to intuition and some hand
waving, it helps to construct so-called truth tables that demonstrate all the
results that can be calculated from all possible combinations of true and false
operators.

The following two tables represent each expression from the previous
example. Each table includes columns for both operators and the corre-
sponding results for all possible true and false combinations. And so, in the
first row, you can see that two first columns—both operands to NOT AND(a,
b)—are false. This causes AND(a, b) to be false, as well, hence causing NOT
AND(a, b) to be true. The outcome is denoted in the third column.

As you can see, the two expressions behave identically:

But why do computer designers care about Bob’s food preferences?
Because in the context of Boolean operators, DeMorgan’s law means that the
set of basic operations proposed by Boolean algebra is actually partially
redundant: a combination of NOT and any of the two other operators (OR
and AND) is always sufficient to synthesize the remaining one. For example:

OR (a, b) NOT AND (NOT a, NOT b)

AND (a, b) NOT OR(NOT a, NOT b)

NOT AND(a, b): AND w/Result Negated

Operand 1 (a) Operand 2 (b) Result

FALSE FALSE TRUE

FALSE TRUE TRUE

TRUE FALSE TRUE

TRUE TRUE FALSE

OR(NOT a, NOT b): OR w/Operands Negated

Operand 1 Operand 2 Result

FALSE FALSE TRUE

FALSE TRUE TRUE

TRUE FALSE TRUE

TRUE TRUE FALSE
Ext ra Ef for ts Never Go Unnot iced 23

This understanding reduces the set of operators to two, but the Boolean
system can be simplified still further.

Convenience Is a Necessity

Several additional operators are not crucial for implementing Boolean
logic, but complement the existing set of operations. These additional
operators, NAND and NOR, are true only when AND and OR respectively
are false:

NAND(a, b) NOT AND(a, b) OR(NOT a, NOT b)

NOR(a, b) NOT OR(a, b) AND(NOT a, NOT b)

These new functions are no more complex than AND and OR. Each has
a four-state (four-row) truth table, and hence its value can determined with
just as much effort.

NOTE NOR and NAND are not found in the basic set of operands because neither one corre-
sponds to a commonly used, basic type of logical relation between sentences and has no
atomic representation in the common language.

I have just introduced a set of new operators, derived from the existing
set, that seem to offer nothing but a dubious convenience feature for those
wanting to express more bizarre logic dependencies or problems using
formal notation. What for?

The introduction of NAND or NOR alone makes it possible to get rid
of AND, OR, and NOT altogether. This furthers our goal of simplicity and
affords us the ability to describe the entire Boolean algebra system with
fewer elements and operators.

The importance of those negated auxiliary operators is that you
can use any one of them to build a complete Boolean algebra system.
In fact, you can construct all basic operators using NAND, as shown
here. How? Well, quite obviously, the following pairs of statements are
equivalent:

NOT a NAND(a, a)

AND(a, b) NOT NAND(a, b) NAND(NAND(a, b), NAND(a, b))

OR(a, b) NAND(NOT a, NOT b) NAND(NAND(a, a), NAND(b, b))

or, if we prefer to rely exclusively on NOR, rather than NAND, we can say

NOT a NOR(a, a)

OR(a, b) NOT NOR(a, b) NOR(NOR(a, b), NOR(a, b))

AND(a, b) NOR(NOT a, NOT b) NOR(NOR(a, a), NOR(b, b))
24 Chapter 2

Embracing the Complexity

It can be hard to believe that the essence of all computing can be captured
within one of the universal logic operators. You can implement most
complex algorithms, advanced computations, cutting-edge games, and
Internet browsing using an array of simple circuits that involve one of the
following truth tables, which convert input signals to output signals:

It would seem we are going nowhere, though. . . . How come this trivial set
of dependencies make it possible to build a device capable of solving complex
problems, such as rejecting your credit application in a tactful manner? And
what does a piece of theory based on the states “true” and “false” have in
common with digital circuits?

Toward the Material World

There is nothing complex about the mechanism devised by Boole: it calls for
two opposite logic states, “true” and “false,” 0 and 1, “cyan” and “purple,” 999
and 999 ½. The actual meaning, the physical representation, and the medium
are irrelevant; what matters is the arbitrarily chosen convention that assigns
certain states of the medium to a specific set of logic values.

Computers as we know them use two different voltage levels in an
electronic circuit and interpret them as values their designers refer to as 0
and 1. These values, which are carried through the electric circuit, represent
two digits in the binary system—but nothing is stopping a person from using
just about any method to convey the data, from water flow, to chemical
reactions, to smoke signals, to torques transmitted by a set of masterfully
crafted wooden gears. The information remains the same, regardless of its
carrier.

NAND State Table

Operand 1 Operand 2 Result

FALSE FALSE TRUE

FALSE TRUE TRUE

TRUE FALSE TRUE

TRUE TRUE FALSE

NOR State Table

Operand 1 Operand 2 Result

FALSE FALSE TRUE

FALSE TRUE FALSE

TRUE FALSE FALSE

TRUE TRUE FALSE
Ext ra Ef for ts Never Go Unnot iced 25

The key to implementing Boolean logic in the physical world is simple,
once we agree on the physical representation of logic values. Next, we need
only find a way to arrange a set of components to manipulate those values in
order to accommodate any task we want our computer to perform (but more
about this later). First, let’s try to find out how to manipulate signals and
implement real-world logic devices, commonly referred to as gates. Wooden
gates, that is.

A Nonelectric Computer

Moving from a set of theoretical operations spawned by the world of pure
mathematics to a device that can moderate water flow, torques, or electrical
signals in a way that mimics one of the logic operators appears to be a
difficult task—but it isn’t.

Figure 2-1 shows a trivial gear set mechanism that implements NOR
functionality using torque-based logic. The “output” wheel at idle represents
state 0; when a torque is applied to the wheel, its state is 1. The device
transmits torque from an external source to the output only if no torque is
applied to two control “input” wheels. In theory, there is no need for an
external source of energy, and the design could be simpler; in practice,
however, friction and other problems would make it fairly difficult to build a
more complex set of fully self-contained gates.

Figure 2-1: Mechanical NOR gate design

Gate output

Pullback spring

External power supply

Moving pull action shaft

Input 1

Input 2
26 Chapter 2

Applying a torque to either or both of the inputs will pull out the tiny
connector gear and make the “output” gear idle. When inputs go idle, a
spring pulls the connector gear back to its position. The truth table for this
device is exactly what NOR should be.

As you will recall, NOR or NAND are all we need to implement any
Boolean logic operator. Although adding the ability to implement other
operators without recombining NAND and NOR gates would make our
device smaller and more efficient, the device does not need this ability in
order to work.

Assuming we skip the pesky detail of making all the gates work together
in a way we are accustomed with, we can conclude that computers can be
built with almost any technology.*

A Marginally More Popular Computer Design

Although the computer boom of the last several decades sprang from the
ingenious transistor, our reliance on it is not associated with any magical
value or unique quality. Quite simply, it is the most affordable, usable, and
efficient design we have at the moment.

Unlike the possibly far superior wooden gear machine, the electronic
computers we use relay electrical signals using transistors, which are tiny
devices that let a current flow in one direction between two of their nodes
(connection points) when a voltage is applied to the third node. Transistors
can be miniaturized quite efficiently, require little power, and are reliable
and cheap.

Logic Gates

The transistor is simple. In fact, it alone is too simple a device to implement
any meaningful Boolean logic. Yet, when properly arranged in logic gates,
transistors make it easy to perform all basic and supplementary Boolean
algebra operations.

The AND gate can be implemented by arranging two transistors serially,
so that both must have low resistance (be “on”) before the voltage can flow to
the output. Each transistor is controlled (activated) by a separate input line.
The output is nominally “pulled down” using a resistor, so that it has the
ground voltage 0 (“false”), but will go up past 0 once both transistors switch
on and allow a slight current flow.

The OR gate is implemented by setting up a parallel transistor so that it
is sufficient for any of the transistors to enable in order for the output to be
set to a nonzero voltage, signifying “truth.”

* And, needless to say, nonelectric computers are not a tall tale. Famous examples of such
devices include Charles Babbage’s Analytical Engine, and technologies such as nanotechnology
also hold some promise. See Ralph C. Merkle, “Two Types of Mechanical Reversible Logic,”
Nanotechnology 4 (1993).
Ext ra Ef for ts Never Go Unnot iced 27

The last basic gate, NOT, is implemented using a single transistor and a
resistor. “NOT” output is 1 in the idle state (pulled up through the resistor)
and gets pulled down to 0 when the transistor opens.

Figure 2-2 shows the three most basic transistor gate designs: AND, OR,
and NOT.

Figure 2-2: Transistor-based logic gates—construction and symbols

NOTE You might notice that both AND and OR gates can be turned into NAND and NOR
without introducing additional components. It is sufficient to use a design observed on
the schematics for a NOT gate—that is, by moving the resistor and “output point”
toward the supply voltage, thus reverting the output logic.

We have now reached a point where we can combine transistors to
implement one of the universal gates, but regardless of how many gates we
can build, it is still quite far from real computing.

The preceding discussion is all well and good, but what makes Boolean
logic more than a powerful tool for solving puzzles about Bob’s diet?

From Logic Operators to Calculations

Combining trivial Boolean logic operations can lead to a number of
surprising capabilities, such as the ability to perform arithmetic operations
on binary representations of numbers. This is where things get interesting.

A set of XOR and AND gates, for example, can be used to increase an
input number by 1, and this is the first step on our way toward addition.
Figure 2-3 shows a design for a counter, based on this concept.

Ah, a new term! XOR is yet another “convenient” Boolean logic operator
that is true only when one of its operands is true. In this regard, it is closer to
the usual meaning of “or” in English. XOR is often used to simplify notation,
but otherwise easy to implement by other means, by recombining AND,
NOT, and OR. It is defined this way:

XOR(a, b) AND(OR(a, b), NOT AND(a, b))

Back to the circuit of ours . . . what can it do? The device shown in
Figure 2-3 is fed with a number written in binary. In this example, that num-
ber is limited to three bits, although this design could easily be extended to
allow for a larger number of inputs.

AND Gate

Input 1

+

Input 2

Output

OR Gate

Input 1

+

Input 2

Output

NOT Gate+

Input

Output
28 Chapter 2

Figure 2-3: Trivial increase-by-one circuit

This simple computation device works the way humans add decimal
numbers on a piece of paper—working from right to left, eventually carrying
a value to the next column. The only real difference is that it uses binary.

Let’s see how that would happen. We have a binary number written in a
line. We want to increase it by one; we start at the rightmost digit, the way we
would do with decimal addition.

We have a binary digit there; when increasing a binary digit by 1, only
two outcomes are possible: if the input digit is 0, the output is 1 (0 + 1 = 1);
otherwise, the output is 0, and we need to carry 1 to the next column (1 + 1 =
10). In other words, we do two things: we produce an output that is a
negation of the input (1 for 0, 0 for 1), and, if the input digit is 1, we must
keep that in mind and include it later.

The circuit does just that: for the first input, I0. The topmost gate
processes the input by negating it and supplying it on output O0 and also
feeds the input value itself to the gates that are responsible for handling the
next column (O1).

O0 = NOT I0

C0 = I0

Well, we have increased the number by one; there is nothing else for us
to do in the remaining columns if there is no carry from the previous one. If
there is no carry, O1 should mirror I1. If there is a carry value, however, we
need to treat the case the same way we handled adding 1 to the previous
column: negate the output and carry a value to the next column if applicable.

From now on, every subsequent output (On for n > 0) will be either
copied directly from In if there is no bit carried over from the previous
column or increased by 1 (which, again, boils down to negation) due to
addition of a carry bit. And so, if In is 1, the carry from this column, Cn, will

XOR

Increase by 1

XOR
AND

NOT
I0

I1

I2

O0

O1

O2

O3 (carry)

Output number

Input number

AND
Ext ra Ef for ts Never Go Unnot iced 29

also be 1, and On will be 0 (because, in binary, 1 + 1 is 10). As you might
notice, the actual output at position n is simply a result of XOR of the input
value at position n, and the carry bit from column n1. Hence, the circuit
generates On by XORing the bit carried from Cn1 with the value of In and
then ANDing the carry from On1 with In to determine if there should be a
carry to the next column:

On = XOR(In, Cn1)

Cn = AND (In, Cn1)

Consider the following example. We want to increase an input value, 3
(011 in binary), by 1. Inputs are as follows:

I0 = 1

I1 = 1

I2 = 0

The circuit produces O0 by negating I0; hence O0 = 0. Because I0 was
nonzero, there is also a carry passed to the next column. In the next column,
the XOR gate sets O1 to 0, because, even though I1 was 1, there was a carry
value from the previous column (1 + 1 = 10). Again, there is a carry to the
next column.

In yet another column, I2 = 0, but the AND gate indicates a carry value
from the previous row, because two previous inputs were both set to 1. Hence,
the output is 1. There will be no carry to the last column. The output is:

O0 = 0

O1 = 0

O2 = 1

O0 = 0

. . . or 0100, which, quite incidentally, is 4 when converted to decimal
numbers.

 And voilà—that’s +1, written in binary.

NOTE We have just expressed the first computing problem in terms of Boolean algebra. You
might be tempted to extend the design to be able to sum two arbitrary numbers, rather
than just one number and the number 1. Nonetheless, this basic circuitry is much
where computing starts and ends.

Digital arithmetic circuitry works by running certain input data through
an array of cleverly arranged logic gates that, in turn, add, subtract, multiply,
or perform other trivial modifications on an array of bits. Little magic is
involved.

So far, I have explained the ability of silicon chips or crafted wood to
perform certain fixed, basic operations such as integer arithmetics. Yet,
something is missing from this picture: computers do not come with text
editors, games, and peer-to-peer software hard-coded in a painstakingly
complex array of gates inside the CPU. Where is the software kept?
30 Chapter 2

From Electronic Egg Timer to Computer

The true value of a computer lies in its ability to be programmed to act in a
specific way—to execute a sequence of software commands according to
some plan.

Figure 2-4 illustrates the next step on our way toward developing a
flexible machine that can do more than just a single, hard-wired task: data
storage and memory. In this figure, we see a type of memory storage unit
known as a flip-flop design. This memory cell has two control lines, “set” and
“reset.” When both are down, the gate maintains its current state, thanks to a
feedback connection between its input and output to the OR gate. Previous
output from OR is passed through an AND gate because its other line is set
to 1 (negated “reset”), and through OR once again, because its other input is
0 (“set”). The state of the output is sustained for as long as the gates are
powered.

Figure 2-4: Flip-flop memory with a practical interface

When “set” goes high, the OR gate is forced to output 1 and will retain
this value when “set” goes back down. When “reset” line goes high, the AND
gate is forced to output 0 and break the feedback loop, thus forcing the
circuit to output 0. Once “reset” goes down, the output remains 0. When
both control lines are up, the circuit becomes unstable—something not
quite pretty, especially when the computer in question is mechanical.

The truth table for this design is as follows (V denotes an arbitrary logic
value):

Flip-Flop Truth Table

Set Reset Qt-1 Qt

0 0 V V

1 0 - 1

0 1 - 0

1 1 - unstable

Flip-flop cell

Update interface

NOT
NOT

AND

AND

OR

AND

Data

Strobe

Set

Reset

Output
Ext ra Ef for ts Never Go Unnot iced 31

A more practical variant of a flip-flop circuit, which incorporates an
“update interface” (see Figure 2-4, leftmost portion), uses two AND gates
and one NOT gate so that the state of an input line is captured (sampled and
held) whenever an external “strobe” control signal occurs. This design elimi-
nates unstable combinations of inputs and makes this sort of memory easier
to use for storing information.

This trivial gate configuration exhibits an important property: it can
store data. A single cell can store only a single bit, but combining a number
of flip-flops can extend the storage capacity. Although today’s memory
designs vary, the significance of this functionality remains the same: it allows
programs to execute. But how?

In the basic design, the chip stores a special value, usually called the
instruction pointer, in an internal on-chip memory latch (register) consisting
of several flip-flops. Because popular computers work synchronously, with all
processes timed by a clock signal generator working at a high frequency, the
pointer selects a memory cell from the main memory on every clock cycle.
The control data retrieved this way then selects and activates the appropriate
arithmetic circuit to process the input data.

For some control data, our hypothetical chip performs addition; for
others, it gets involved in an input-output operation. After fetching each
piece of control data (every machine instruction), the chip has to advance
its internal instruction pointer so that it will be prepared to read the next
command in the next cycle. Thanks to this functionality, we can use the
chip to execute a sequence of machine instructions, or a program.

It is now time to find out which operations the chip has to implement in
order for it to be usable.

Turing and Instruction Set Complexity

As it turns out, the processor does not have to be complex. In fact, the set of
instructions required for a chip to be able to execute just about any task is
surprisingly small. The Church-Turing thesis states that every real-world
computation can be carried out by a Turing machine, which is a primitive
model of a computer. The Turing machine, named after its inventor, is a
trivial device that operates on a potentially infinite tape consisting of single
cells, a hypothetical, purely abstract storage medium. Each cell can store a
single character from a machine “alphabet,” which is simply a name for a

Improved Flip-Flop Truth Table

Input Strobe Qt-1 Qt

- 0 V V

S 1 - S
32 Chapter 2

finite ordered set of possible values. (This alphabet has absolutely nothing to
do with human alphabets; it was named this way to promote a healthy dose of
confusion among the laity.)

The device is also equipped with an internal register that can hold a
finite number of equally internal states. A Turing machine starts at a certain
position on the tape, in a given state, and then reads a character from a cell
on the tape. Every automaton has an associated set of transition patterns that
describe how to modify its internal state, what to store on the tape based on
the situation after the read, and how to (optionally) move the tape either way
by one cell. Such a set of transitions defines the rules for calculating the
system’s next state based on its current characteristics. These rules are often
documented using a state transition table like this.

The table tells us that, if the current value of a cell under which the
machine is currently positioned is 0, and the machine’s internal state at that
moment is S0, the device will alter the state of C to 1, will alter its internal
state to S1, and will not move the reading head.

Figure 2-5 shows an example of a Turing machine positioned at cell C
with internal state S.

Figure 2-5: Sample Turing machine execution stages

State Transition Table

Current State New State/Action

Ct St Ct+1 St+1 MOVE

0 S0 1 S1 -

1 S0 0 S0 LEFT

S0

S0

Tape C

S0, C = 1
Tape moves LEFT, S does not change

S0, C = 1
Tape: no movement, S changes to S1

State S1 is the exit condition.
Machine stops.

Tape C

Tape C

S1

0 1 0 1 1 1 0 0 1

0 1 0 1 1 1 0 0 1

0 1 0 1 1 1 0 0 1
Ext ra Ef for ts Never Go Unnot iced 33

Let’s walk through this. As you can see in Figure 2-5, the machine uses an
alphabet of two characters, 0 and 1, and has two internal states, S0 and S1. It
starts with S0. (Starting conditions can be defined arbitrarily; I chose to start
it there for no particular reason.) When positioned at the end (the least
significant bit) of a binary number stored on the tape (C0), the machine
follows this logic:

 If the character under the machine head is 0, it is changed to 1, and the
state of the machine is changed to S1, according to the first transition
rule documented in the table preceding. Because there is no transition
rule from S1, the machine stops in the next cycle.

 If the character read from beneath the head is 1, it changes to 0,
and the state remains the same. The machine also moves the
reading head on the tape to the left, per the second transition rule.
The entire process then repeats, starting at the new location, because
the machine remains in its current state, for which further transition
rules are defined.

Functionality, at Last

Although this may come as a surprise, this particular machine is actually
useful and implements a task that can be of more than theoretical value: it
performs basic arithmetic. It does precisely the same thing as our increase-by-
one circuit discussed earlier in this chapter. In fact, it implements the same
algorithm: bits on the tape, starting at the rightmost position, are inverted
until after 0 is encountered (and also inverted).

This is, naturally, just the tip of the iceberg. A proper Turing machine
can implement any algorithm ever conceived. The only problem is that every
algorithm requires the implementation of a separate set of transition rules
and internal states; in other words, we need to build a new Turing machine
for every new task, which is not quite practical in the long run.

Thankfully, a special type of such a machine, a Universal Turing Machine
(UTM), has an instruction set that is advanced enough to implement all
specific Turing machines and to execute any algorithm without the need to
alter the transition table.

This über-machine is neither particularly abstract nor complex. Its
existence is guaranteed because a specific Turing machine can be devised to
perform any finite algorithm (according to the aforementioned Church-
Turing thesis). Because the method for “running” a Turing machine is itself
a finite algorithm, a machine can be devised to execute it.

As to the complexity of this machine, a one-bit, two-element alphabet
machine (the smallest UTM devised) requires 22 internal states and instruc-
tions describing state transitions, in order to execute algorithms on a sequen-
tial infinite memory tape.1 That’s not that big a deal.
34 Chapter 2

Holy Grail: The Programmable Computer

The Turing machine is also far more than just a hypothetical abstract device
that mathematicians use to entertain themselves. It is a construct that begs to
be implemented using a specially designed, Boolean, logic-based electronic
(or mechanical) device and perhaps extended to make it far more useful,
which brings us one step closer to useful computing. The only problem is
that the prerequisite for an infinitely long input tape cannot be satisfied in
the real world. Nevertheless, we can provide plenty of it, making such a
hardware Turing machine quite usable for most of our everyday problems.
Enter the universal computer.

Real computers, of course, go far beyond the sequential access single-bit
memory, thus significantly reducing the set of instructions required to
achieve Turing completeness. A UTM with an alphabet of 18 characters
requires only two internal states in order to work. Real computers, on the
other hand, usually operate on an “alphabet” of at least 4,294,967,296
characters (32 bits), and often far more, which allows for nonsequential
memory access and for the use of a large number of registers with an
astronomical number of possible internal states.

In the end, the UTM model proves and everyday practice confirms that it
is possible to build a flexible, programmable processing unit using only a
handful of features, composed of two or three internal registers (instruction
pointer, data read/write pointer, and perhaps an accumulator) and a small
set of instructions. It is perfectly feasible to assemble such a device with just
hundreds of logic gates, even though today’s designs may use many more.

As you can see, the notion of building a computer from scratch is not so
absurd—even a wooden one.

Advancement through Simplicity
Coming up with such an unimpressive set of instructions is, of course, not
going to make the device fast or easy to program. Universal Turing Machines
can do just about everything (in many cases, by virtue of their simplicity),
but they are painfully slow and difficult to program, to a degree that even
implementing machine-assisted translation from more human-readable
languages to machine code is difficult, at least without driving the programmer
clinically insane.

Architectures or languages that come too close to implementing bare-
bones Turing completeness are often referred to as Turing tarpits. This means
that, while it is theoretically possible to carry out just about any task with their
help, in practice, it is barely feasible, too time-consuming, and too
burdensome to actually try. Even simpler tasks such as integer multiplication
or moving the contents of memory can take forever to set up, and twice as
long to execute. The less effort and time required to complete simple and
repetitive tasks, and the fewer the tasks that have to be accomplished by
software using a number of separate instructions, the better.
Ext ra Ef for ts Never Go Unnot iced 35

One popular way to improve the functionality and performance of a proc-
essing unit is to implement certain common tasks in the hardware that would
be quite annoying to perform in software. These tasks are implemented using
an array of specialized circuits (and include multiplication and home-loan-
rejection processing), thus adding convenient extensions to the architecture
and enabling the faster and saner deployment of programs, while still enabling
the system to execute those functions in a programmed, flexible order.

Surprisingly, beyond the few initial steps, it is not always desirable when
designing a processor to linearly increase the complexity of the circuitry in
order to make processors achieve higher speeds, be more energy efficient,
and provide a better feature set. You can, of course, build a large number of
circuits to handle just about any frequently used complex operation imagin-
able. However, this won’t be practical until the architecture is truly mature,
and your budget allows you to invest additional effort and resources in mak-
ing a chip. Although programs on such a platform indeed require less time
to execute and are easier to write, the device itself is far more difficult to
build, requires more power, and could become too bulky or expensive for
routine use. Complex algorithms such as division or floating-point opera-
tions require an insanely large array of usually idle gates to complete such a
task in a single step.

Split the Task

Rather than following this expensive and possibly naive path of building blocks
to carry out entire instructions at once, it is best to abandon the single-cycle
execution model until you have a working design and plenty of time to
improve it. A better way to achieve complex functionality in hardware is to
hack the job into tiny bits and execute advanced tasks in a number of cycles.

In such a multicycle design, the processor goes through a number of
internal stages, much like the add-one Turing machine example. It runs the
data through simple circuits in the right order, thus implementing a more
complex functionality step by step, which relies on more basic components.
Rather than use a complex device to do all the math at once, it might use a
circuit to multiply subsequent bits of 32-bit integers and track carry values
and then produce a final result in the 33rd cycle. Or, it could perform
certain independent, preparation tasks that precede the actual operation.
This would free us from having to design dozens of circuits for every variant
of an opcode, depending on where it should get its operands or store results.

The added benefit of this approach is that it enables more efficient
hardware resource management: for trivial operands; a variable-complexity
algorithm can complete sooner, taking only as many cycles as absolutely
necessary. For example, division by 1 is likely to require less time than
division by 187,371.
36 Chapter 2

A simple, cheap circuit, with maximum usage and a variable execution
time could quite easily be more cost efficient than a complex and power-
consuming one with a constant execution time. Although some of today’s
processors have attempted to use a fixed number of cycles to complete
more and more tasks, virtually all began as multicycle architectures. Even
for these big boys, the model seldom remains truly single cycle, as you’ll see
in a moment.

But first, let’s take a look at how this very advantage of simplicity through
multicycle execution can backfire.

Execution Stages

One of the variations of multicycle execution is a method that splits a task
not into a number of repetitive steps, but rather into a number of distinct yet
generic preparation and execution stages. This method, called staging, is
used in today’s processors to make them perform better without necessarily
becoming linearly more complex. Execution staging has become one of a
processor’s more important features.

Today’s processors can translate every instruction into a set of largely
independent small steps. Certain steps can be achieved using generic circuits
shared by all instructions, thus contributing to the overall simplicity. For
example, the circuitry specific to a given task (our favorite multiplication
comes to mind once more) can be made more universal and reusable as a
part of various advanced instructions by separating it from any generic I/O
handling tasks, and so on. The set of execution stages and transitions
depends on the architecture, but it is usually similar to the scheme shown in
Figure 2-6.

Figure 2-6: Baseline instruction execution stages

Instruction
fetch/decode

Operand
fetch/decode

ALU stage Memory store

Instruction 1
DONE

Instruction 2
DONE

2

1

2

1

2

1

2

1

Ti
m

e

Ext ra Ef for ts Never Go Unnot iced 37

Figure 2-6 shows the following stages:

Instruction fetch/decode

The processor retrieves an instruction from memory, translates it to a
low-level sequence, and decides how to proceed and which data to pass
to all subsequent stages. The circuit is shared for all operations.

Operand fetch/decode

The processor uses a generic circuit to fetch operands from sources for
this particular instruction (for example, from specified internal regis-
ters) so that the main circuit does not have to support all possible oper-
and combinations and fetch strategies.

ALU

An arithmetic logic unit (ALU) tailored to perform this particular opera-
tion, perhaps in a number of steps, is invoked to perform a specified
arithmetic task. For nonarithmetic (memory transfer) instructions,
generic or dedicated ALU circuits are sometimes used to calculate
source and destination addresses.

Memory store

The result is stored at its destination. For nonarithmetic operations, the
memory is copied between calculated locations.

This, alone, may appear to be merely a variation of regular multicycle
execution and a circuit reuse measure—one that is prevalent in most of
today’s CPU designs. But as you will see, it is also of utmost importance to
execution speed.

The Lesser Memory

The simplicity of circuitry is not where this story ends. One additional
advantage to the multicycle design is that the processor speed is no longer
limited by the memory, the slowest component of the system. Consumer-
grade external memory is considerably slower than today’s processors and
has a high access and write latency. A single-cycle processor can be no faster
than it takes to reliably access memory, even though it is not accessing
memory all the time. It needs to be slow simply because one of the single-
cycle instructions it could encounter might require memory access; and
hence, there must be enough time to accomplish this. Multicycle designs, on
the other hand, allow the CPU to take its time and even idle for a couple of
cycles as necessary (during memory I/O, for example), but run at full speed
when performing internal computations. Too, when using multicycle
designs, its easier to speed up memory-intensive operations without having to
invest in faster main memory.
38 Chapter 2

The flip-flop design, commonly referred to as SRAM (static RAM), offers
low-access latency and consumes little power. Current designs require about 5
nanoseconds, which is comparable to the cycle interval of some processors.
Unfortunately, the design also requires a considerable number of components
per flip-flop, typically about six transistors per bit.

Unlike SRAM, DRAM, (dynamic RAM) the other memory design popular
today, uses an array of capacitors to store the information. Capacitors,
however, tend to discharge and need to be refreshed regularly. DRAM
requires more power than SRAM and has a considerably higher access and
modification latency, as high as 50 nanoseconds. On the upside, DRAM is
much cheaper to manufacture than SRAM.

The use of SRAM for main memory is practically unheard of because its
cost is prohibitive. Besides, we would have trouble using all that increase in
performance, which would require us to run the memory at nearly the same
speed as the CPU. Alas, because main memory is sizable and designed to be
extensible, it must be placed outside the CPU. Although the CPU core can
usually run at a speed much higher than the world around it, serious reliability
issues (such as track capacitance on the motherboard, interference, costs of
high-speed peripheral chips, and so on) arise when data must be transferred
over longer distances.

Rather than take the cost-prohibitive routes of using faster external
memory or integrating all memory with the CPU, manufacturers usually
adopt a more reasonable approach. Advanced CPUs are equipped with fast
but considerably smaller in-core memory, SRAM or some derivative, that
caches the most frequently accessed memory regions and sometimes stores
certain additional CPU-specific data. Thus, whenever a chunk of memory is
found in cache (cache hit), it can be accessed rapidly. Only when a chunk of
memory has to be fetched from the main memory (cache miss) can there be a
considerable delay, at which point the processor has to postpone some of its
operations for some time. (Single-cycle processors cannot take full advantage
of internal caching.)

Do More at Once: Pipelining
As I have mentioned, staging offers a considerable performance advantage
that goes far beyond a traditional multicycle approach. There is one major
difference between them, though: because many of the stages are shared by
various instructions, there is no reason not to optimize execution a bit.

Figure 2-6 shows that, with separate stages executing separately, only a
specific part of the device is used in every cycle. Even though the instruction
currently executed has already passed the first stages, it blocks the entire
CPU until it completes. For systems with a high number of execution stages
(the count often reaches or exceeds 10 on today’s chips, with the Pentium 4
exceeding 20) this proves to be a terrible waste of computing power.
Ext ra Ef for ts Never Go Unnot iced 39

One solution is to let the next instruction enter the execution pipeline as
soon as the previous one moves to the following stage, as shown in Figure 2-7.
As soon as a particular stage of the first instruction is finished, and the
execution moves to the next stage, the previous stage is fed with a portion of
the subsequent instruction, and so forth. By the time the first instruction
completes, the next is only one stage from being completed, and the third
instruction is two stages apart. Execution time is thus decreased rather
dramatically, and chip usage becomes optimal, using this cascading method.

Figure 2-7: Pipeline execution model

Pipelining works fine as long as the instructions are not interdependent
and neither operates on the output of its predecessor still in the pipeline. If
the instructions do depend on each other, serious problems are bound to
ensue. As such, a special circuit must be implemented to supervise the pipeline
and to prevent such interlocking situations.

There are more challenges when it comes to pipelining. For example, on
some processors, the set of stages may be different for distinct operations. Not
all stages are always applicable, and it might be more optimal to skip some.
Certain simple operations could conceivably be run through the pipeline
much faster, because there are no operands to be fetched or stored. In
addition, some stages can take a variable number of cycles, which contributes
to the risk of collisions when two instructions reach the same execution stage
at the same point. To prevent this, certain additional mechanisms such as
pipeline “bubbles,” no-op stages designed to introduce ephemeral delays when
necessary, must be devised.

The Big Problem with Pipelines

Traditional pipelines are a great tool for achieving high performance with
simple, multistaged chip design, by reducing the latency of subsequent
instructions and ensuring optimal circuit usage, but they are not without
concerns: it is not possible to pipeline instructions past a conditional branch
instruction if those instructions could alter further program execution.

Instruction
fetch/decode

Operand
fetch/decode

ALU stage Memory store

Instruction 2
DONE

2
1

2
1

2
1

Instruction 1
DONE

2
1

Ti
m

e

40 Chapter 2

In fact, it often is possible, but the processor has no idea which execution
path to follow, and if an incorrect decision is made, the entire pipeline has to
be flushed down immediately after a branch instruction. (The CPU must also
delay committing any changes made by these instructions that, after all, were
not to be executed.) Dumping the pipeline introduces an additional delay.

And, unfortunately for this design, many CPU-intensive tasks, including
plenty of video and audio algorithms, rely on small conditional-exit loops
executed millions of times in sequence, thus inflicting a terrible performance
impact on the pipelined architecture.

The answer to this problem is branch prediction. Branch predictors are
usually fairly simple counter circuits that track the most recent code
execution and maintain a small history buffer to make educated guesses
about the most likely outcome of a conditional branch operation (although
more complex designs are also often deployed2).

All branch predictors employ a strategy that is designed to offer the
best pipelining performance for a given code: if a specific branch instruc-
tion is executed more often than it is skipped, it is better to fetch and
pipeline instructions. Of course, the prediction can fail, in which case,
the entire queue must be dropped. However, today’s predictors achieve
up to 90 percent success rates in typical code.

Implications: Subtle Differences

The advanced set of optimizations employed in today’s processors results in
an interesting set of consequences. We observe that execution times depend
on the following characteristics, which can be divided into three groups:

Type of instruction and the complexity of the operation. Some operations
execute much faster than others.

Operand values. Certain multiple cycle algorithms prove faster for trivial
inputs. For example, multiplying a value by 0 is generally rather trivial
and can be done quickly.

The memory location from which the data needed for the instruction must
be retrieved. Cached memory is available sooner.

The importance, prevalence, and impact of each of these characteristics
depends on the exact nature of the CPU architecture in question. The first
characteristic—variable instruction execution times—is shared by all multi-
cycle architectures, but might be absent on some basic chips. The second—
dependence on operands—is increasingly extinct in top-of-the-line processors.

In top-end devices, ALU and Floating Point Unit (FPU) components
sometimes work at a speed higher than the CPU itself. Hence, even if there
are computation speed differences, they cannot be precisely measured
because much of the arithmetic is done within one CPU clock tick.
Ext ra Ef for ts Never Go Unnot iced 41

The last group of timing patterns—memory location dependence—is,
for a change, exclusive to today’s, high-performance computers and is
unheard of in low-end controllers and various embedded designs.

The first two timing pattern groups—operation complexity and operand
value dependences—can also manifest themselves on a level slightly higher
than the CPU itself, namely software. Processors feature arithmetic units that
deal well with fairly small integers (usually from 8 to 128 bits) and some
floating-point numbers, but today’s cryptography and many other applica-
tions require the manipulation of large numbers (often hundreds or
thousands of digits), high-precision floats, or various mathematic operations
that are not implemented in hardware. Therefore, this functionality is
commonly implemented in software libraries. Algorithms in those libraries
are again likely to take variable time, depending on the specifics of the
operation and operands.

Using Timing Patterns to Reconstruct Data
It can be argued that an attacker could deduce certain properties of the
operands or of an operation performed by monitoring how long it takes for a
program to process data. This poses a potential security risk because in
several scenarios, at least one of the operands can be a secret value that is not
supposed to be disclosed to a third party.

Although the concept of recovering data by watching someone with a
stopwatch in your hand might sound surreal, today’s CPUs offer precise
counters that allow parties to determine exact time intervals. Too, some
operations can be considerably more time-consuming, with certain advanced
opcodes on the Intel platform taking as much as thousands of cycles to
complete. With ever-increasing network throughput and ever-improving
response times, it is not entirely impossible to deduce this information, even
from a remote system.

The nature of information leaked as computation complexity measure-
ments may not be immediately clear. If so, Paul Kocher from Cryptography
Research demonstrated a great example of this attack last century (that is,
back in the ’90s3), using an example of the RSA algorithm we discussed in
Chapter 1.

Bit by Bit . . .
Kocher observed that the process of decrypting data in the RSA algorithm is
rather simple and is based on solving the following equation:

 mod M

in which T is the decrypted message, c is the encrypted message, k is the
secret key, and M is a moduli, which are a part of the key pair.

T c
k

=

42 Chapter 2

A trivial integer modulo exponentiation algorithm used in a typical
implementation has an important property: if a specific bit of the exponent
is one, a portion of the result is calculated by performing modulo multipli-
cation on a portion of the base (some bits of c). If the bit is 0, the step is
skipped. Even when the step is not actually skipped, the time needed by
software to carry out multiplication varies, as indicated earlier. Most trivial
cases—such as multiplying by a power of 2—are solved more quickly than
others.

Hence, on such a system, it would appear that we can determine
plenty of information about the key (k) by repeatedly checking to see
how long it takes to decrypt a piece of information. Even on platforms
on which hardware multiplication takes a fixed amount of time, a timing
pattern often results from the use of software multiplication algorithms
(such as Karatsuba multiplication algorithm) that are needed for
processing large numbers such as the ones used by public key cryptog-
raphy. Subsequent bits of the exponent make the private key, whereas the
base is a representation of the message supplied or visible to the curious
bystander.

The attack is rather trivial. The villain sends the attacker two similar but
slightly different portions of encrypted data. They differ in a section X, so
that decrypting that section would presumably take a different amount of
time to decrypt. One of the variants of X, as far as the villain’s idea of victim’s
modulo multiplication implementation goes, is a trivial case that would
hence make the task of decrypting X fast. The other variant is expected to
take more time.

If it takes the same amount of time for the attacker to decode and
respond to both sequences, the attacker can safely assume that the part of
the key that was used to decode section X consisted of zeros. They can also
assume that the multiplication algorithm took the early optimization path,
that of not performing any multiplication at all.

If, on the other hand, one of the scenarios takes more time, it’s obvious
that in both cases, the multiplication was carried out, with one case being
simpler to solve. The corresponding part of the secret key bit must have been
set to a nonzero value.

By following this procedure, treating subsequent bits of the encrypted
message as our “section X” and generating, or even (if one has more time)
simply waiting for encrypted messages that will happen to work with this
scenario, it is possible to reconstruct every bit of the key.

NOTE Research suggests that this approach can be successfully extended to just about any
algorithm that is carried out in a variable time and discusses some practical optimiza-
tions for the attack, such as the ability to deploy limited error detection and correction
functionality.
Ext ra Ef for ts Never Go Unnot iced 43

In Practice

The ability to deduce tangible properties of operands for arithmetic instruc-
tions based solely on timing information is the most obvious, effective, and
interesting vector for performing computational complexity attacks. Other
techniques, such as cache hit and miss timing, usually require considerably
more detailed analysis and reveal less information in every cycle.

It is clear that this problem would, to a degree, affect many software
algorithms, such as large-number arithmetic libraries commonly used in
cryptographic applications. But software algorithms and theory aside, a
couple of important questions remain: how real is the execution time
dependency on the hardware level, and how can it be measured?

An example is well within reach. At least a portion of the Intel IA32
architecture exhibits this behavior. The 80386 Programmer’s Reference Manual4
describes an integer-signed multiplication opcode, denoted by the mnemonic
IMUL. The opcode, in its basic form, multiplies the value stored in the accum-
ulator (a multipurpose working register going by the name [E]AX on this
platform), by a value stored in another register. The result is then stored back
in the accumulator.

The documentation further explains:

The 80386 uses an early-out multiply algorithm. The actual
number of clocks depends on the position of the most
significant bit in the optimizing multiplier [...]. The
optimization occurs for positive and negative values.
Because of the early-out algorithm, clock counts given are
minimum to maximum. To calculate the actual clocks, use
the following formula:

Actual clock = if m <> 0 then max(ceiling(log2(m)), 3) + 6
clocks

Actual clock = if m = 0 then 9 clocks

Although this may look cryptic, its meaning is simple: The processor
optimizes multiplication based on the value of the multiplier. Instead of
multiplying the multiplicand until all bits of the multiplier are exhausted, it
skips zeros at the beginning of the operand.

Early-Out Optimization

To understand the relevance of this tactic to integer multiplication, imagine
a traditional iterative multiplication method taught in schools, except this
time in binary. A hypothetical “dumb” implementation of this algorithm
performs the following set of operations.

 00000000 00000000 11001010 11111110 Multiplicand (P)
* 00000000 00000000 00000000 00000110 Multiplier (R)

44 Chapter 2

 00000000 00000000 00000000 00000000 P * R[0] = P * 0
 00000000 00000001 10010101 1111110 P * R[1] = P * 1
 00000000 00000011 00101011 111110 P * R[2] = P * 1
 00000000 00000000 00000000 00000 P * R[3] = P * 0
 00000000 00000000 00000000 0000 P * R[4] = P * 0
 00000000 00000000 00000000 000 P * R[5] = P * 0
 ...
+ 0 P * R[31] = P * 0

 00000000 00000100 11000001 11110100

It should be obvious that a large number of these operations are com-
pletely unnecessary and unwarranted and that continuing the operation
once nothing but zeros remain at subsequent bits of the multiplier is simply
pointless. A more reasonable approach is to skip them:

 00000000 00000000 11001010 11111110 Multiplicand (P)
* 00000000 00000000 00000000 00000110 Multiplier (R) - optimizing

 00000000 00000000 00000000 00000000 P * R[0] = P * 0
 00000000 00000001 10010101 1111110 P * R[1] = P * 1
+ 00000000 00000011 00101011 111110 P * R[2] = P * 1
 ...Bail out – ignore leading zeros of R!

 00000000 00000100 11000001 11110100

And this is, in essence, the nature of the early-out optimization that Intel
deployed.

NOTE This optimization makes multiplication nonsymmetrical in time. 2*100 will compute
more slowly than 100*2 (!), even though the result is obviously the same.

With early-out optimization, Intel processors require a variable number
of cycles to perform multiplication, and the length is directly proportional to
the location of the oldest (most significant) bit set in the second operand. By
applying the clock count algorithm provided in the documentation, it is
possible to determine the correlation between the multiplier and IMUL
time, as shown here:

Multiplier Value Range Cycles to Complete

0 – 7 9

8 – 15 10

16 – 31 11

32 – 63 12

64 – 127 13

128 – 255 14

256 – 1,023 15

1,024 – 2,047 16

2,048 – 4,095 17 (continued)
Ext ra Ef for ts Never Go Unnot iced 45

A similar dependency exists for negative multiplier values.

Working Code—Do It Yourself

The following code listing shows a practical implementation in C for Unix-
type systems that can be used to confirm and measure differences in timing
patterns. The program is invoked with two parameters: multiplicand (which
should not affect performance in any way) and multiplier (presumably used in
early-out optimizations and hence impacting the speed of the entire oper-
ation). The program performs 256 tests of 500 subsequent multiplications
with the chosen parameters and returns the shortest measured time.

We run 256 tests and select the best result in order to compensate for
cases in which execution is interrupted by the system for some period of
time, a condition fairly common in multitasking environments. Although a
single test can be affected by such an event, at least some of the test in a rapid
sequence of short tests can be expected to complete without interruption.

The code uses the system clock to measure execution time in micro-
seconds.

NOTE Several of today’s Intel chips feature a precise timing mechanism available through
RDTSC opcode. This method for accessing the internal clock cycle counter is not avail-
able on older platforms, and so we will not rely on it.

4,096 – 8,191 18

8,192 – 16,383 19

16,384 – 32,767 20

32,768 – 65,535 21

65,536 – 131,071 22

131,072 – 262,143 23

262,144 – 524,287 24

524,288 – 1,048,575 25

1,048,576 – 2,097,151 26

2,097,152 – 4,194,303 27

4,194,304 – 8,388,607 28

8,388,608 – 16,777,215 29

16,777,216 – 33,554,431 30

33,554,432 – 67,108,863 31

67,108,864 – 134,217,727 32

134,217,728 – 268,435,455 33

268,435,456 – 536,870,911 34

536,870,912 – 1,073,741,823 35

1,073,741,824 – 2,147,483,647 36

Multiplier Value Range Cycles to Complete
46 Chapter 2

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/time.h>
#include <limits.h>

int main(int argc,char** argv) {

 int shortest = INT_MAX;
 int i,p,r;

 if (argc != 3) {
 printf("Usage: %s multiplicand multiplier\n",argv[0]);
 exit(1);
 }

 p=atoi(argv[1]);
 r=atoi(argv[2]);

 for (i=0;i<256;i++) {
 int ct;
 struct timeval s;
 struct timeval e;

 gettimeofday(&s,NULL);

 asm(

 " movl $500,%%ecx \n"/* Loop repetition counter (R) */
 "imul_loop: \n"
 " movl %%esi,%%eax \n"
 " movl %%edi,%%edx \n"
 " imul %%edx,%%eax \n"/* Comment out for first run */
 " loop imul_loop \n"

:
: "S" (p), "D" (r)
: "ax", "cx", "dx", "cc");

 gettimeofday(&e,NULL);

 ct = (e.tv_usec - s.tv_usec) +
 (e.tv_sec - s.tv_sec) * 1000000;

 if (ct < shortest) shortest = ct;

 }

 printf("T[%d,%d] = %d usec\n",p,r,shortest);
 return 0;

}

Ext ra Ef for ts Never Go Unnot iced 47

By compiling the code with the IMUL instruction initially commented out
and invoking the program with arbitrary parameters, we can estimate the
timing code overhead (Tidle). If the value falls outside the range of 10 to 100
microseconds—which is high enough to provide a fine-grained readout, but
low enough to maximize the chance of not being interrupted by the operating
system—readjust the loop repetition counter R, which is set to 500 by default.

After restoring the IMUL instruction and recompiling and running the
program with a chosen multiplicand D and repetition counter R, it is possible
to use the returned time approximation TD,R to estimate the number of CPU
cycles spent on IMUL operation (CD,R), as long as the operating frequency of
the processor (FMHz) is known:

As expected, pipelining and branch predictors on newer and more
advanced chips will kick in and skew the result slightly, but a good estimate
can be made.

NOTE On newer Intel processors, the time needed to complete multiplication is already constant.

Prevention

You can take a number of approaches to protect against computational
effort analysis. The most obvious is to make all operations take the same
amount of time to execute. However, this is difficult and often results in
severe performance penalties because the time taken by all computations
would have to be extended to match that of the slowest one.

Introducing random delays sometimes appears to be an acceptable
defense tactic for applications if latency is not critical, in particular many
noninteractive network services, and puts less stress on the processor itself.
However, this random noise can be effectively filtered out if the attack can be
carried out repeatedly.

Another approach, known as blinding, relies on introducing a certain
amount of noise in the system by running random or otherwise bogus and
unpredictable data combined with the actual input to the algorithm in order
to make it impossible for the attacker to deduct meaningful properties of the
input even if the encryption algorithm is vulnerable to timing attacks—then
discarding the surplus information we did not intend to send out. Although
the performance penalty is considerably lower in this scenario, it is difficult
to perform blinding well.

CD R TD R Tidle– FMHz R=
48 Chapter 2

Food for Thought

I’ve taken you on a long ride, but I hope it was worth it. As usual, I will leave
you several possibly quite interesting problems to consider:

 First, although I have focused on the impact that computational com-
plexity attacks have on cryptography-related application, the problem is
not strictly limited to this area, and often manifests itself whenever pri-
vate or confidential information is processed. Certainly, various basic
information about HTTP requests or SMTP traffic can be deduced by
carefully observing the appropriate service on a system; can you think of
any more practical scenarios?

 Second, even if no secret data is being processed by a service, computa-
tional complexity information may be of some use. Consider applica-
tions such as network daemons that prevent disclosure of secrets by
providing perhaps overly generic error or success messages, with the
goal of, for example, making it difficult for an attacker to find out
whether he is getting “login incorrect” because of a mistyped password
or a non-existent user. However, depending on the time it takes to
receive this message, a careful observer may determine which path in the
code was indeed executed, and whether the error occurred earlier
(when just checking for a valid username), or later on (when verifying
the password). I encourage you to experiment with common network
services such as SSH, POP3, and Telnet to see whether there is a measur-
able and consistent difference.

 As always, even the best defenses against information disclosure tend to
fail unexpectedly. Too, computational complexity is not the only way to
determine what’s going on inside a silicon chip. Consider this example:
Biham and Shamir5 have devised a brilliant scheme for cracking “secure”
chip designs used in smart cards. Smart cards are designed to securely
store a piece of information such as personal identification data or cryp-
tographic keys and to divulge it only to certain authentication services
and trusted clients. As it turns out, you can deduce the properties of the
guarded data or the protection mechanism by abusing the device and
inducing faults due to mechanical stress, high-energy radiation, over-
heating, or similar external factors that cause the device to misbehave.

Just thought I’d share.
Ext ra Ef for ts Never Go Unnot iced 49

T E N H E A D S O F T H E H Y D R A
Where we explore several other tempting scenarios that occur

very early on in the process of communications

In Chapters 1 and 2, I discussed two distinct infor-
mation disclosure scenarios that occur as a result of
brilliant, but in the end poorly thought out, attempts
to make computers either more functional or easier to
maintain. The passive snooping vectors these design
decisions open are buried deep beneath the actual
implementation and provide a fascinating insight into
the earliest threats to processed information.

On the other hand, the exposure is naturally limited to the physical or
logical proximity of the environment monitored. Although a nearly endless
number of information disclosure possibilities arise early along the route of a
portion of information, I’ve chosen to single out these two cases for their
uniqueness, beauty, and the relative ease with which a potential attack can be
carried out by a determined attacker. The other scenarios are also worth
mentioning, though, and in this chapter, I touch on some of the more
interesting possibilities that may not warrant a detailed discussion but that
you might want to explore in more detail on your own.

Revealing Emissions: TEMPEST in the TV

In the 1950s, researchers concluded that electromagnetic radiation (EMR)
can often be practically and easily used to recover or reconstruct information
about the behavior of the device emitting it. EMR is undesirable noise caused
by virtually all electronic, electromechanical, and electric devices, regardless
of their design and intended purpose, and often propagated over consider-
able distances via power lines or by air.

Prior to their findings, the problem of EMR was believed to be relevant to
engineering due to a risk of unexpected interference between separate devices
or circuits, but not confirmed to be of any value to a person monitoring the
radio frequencies polluted by the device. However, with the world on the brink
of the era of information warfare, and with the development and increasing
deployment of electronic data processing and telecommunications devices
(some used to transfer or store classified or sensitive information), the
conclusion that a remote observer can reconstruct some of the information
processed by a system by merely listening to a specific frequency became quite
worrisome for governments of the free (or not so free) world.

The term TEMPEST (Transient Electromagnetic Pulse Emanation
Standard) originated from a classified EMR emissions study commissioned
for the U.S. military in the 1960s and was originally used to denote a set of
practices to prevent revealing emissions in electronic circuits processing
sensitive data. It later became just a buzzword for describing a general class
of problems and techniques related to intercepting and reconstructing radio
frequency (RF) emissions.

Although this risk initially sounded more like bad science-fiction than an
actual threat in the ears of skeptics, an important research paper released in
1985 by Wim van Eck,1 demonstrated that it would be—and in fact is—quite
easy to reconstruct the image displayed on a CRT monitor by intercepting
radio frequency signals generated by high-voltage circuits inside such a device.

A typical CRT (see Figure 3-1)builds its display by illuminating every
pixel of the image in sequence, line by line and then row by row, at very high
speed, and modulating the strength of the signal depending on the location
of the screen that is lit up at any moment. To achieve this, a narrow beam
of electrons is emitted from a cathode gun in the back of the device. This
electron beam hits the anode (a conductive layer of material on the display),
which, in turn, emits photons of visible light that we see. The electron beam
is modulated by a special circuit, but also positioned by a set of electro-
magnets that cause it to sweep the entire display area from left to right
and top to bottom to produce and update the image on the screen. Wim
noted that the oscillators controlling the electromagnets and the electron
gun electronics emit several types of characteristic signals at standard
frequencies. It is rather trivial to spot these signals in the radio spectrum,*

* For this reason, and because of power line interference, “nature radio” enthusiasts who want to
listen to earth’s ultra-low frequency signals must often travel with their recording equipment to
distant, secluded areas.
52 Chapter 3

and each of the signals is usually clear and strong enough to make it easy to
build a fairly inexpensive device that can snoop on CRT displays, even from
a considerable distance.

Figure 3-1: A CRT display image scan and the buildup process

NOTE Emissions are, of course, not limited to CRT screens and are just as common in LCD
(TFT, or thin film transistor) displays and any computer circuitry. They are also just as
common on databuses, where the information between separate chips is carried over a
large set of usually fairly long and sharply cornered conductive tracks laid out on the
main board that, among other things, serve as a great antenna (although the ease of
extracting and interpreting a specific signal, as well as the range of an emission, can
vary rather significantly).

Although there are no verifiable accounts of emission attacks being
carried out in the wild, other than for military and intelligence applications
(particularly during the Cold War2), some anecdotal accounts of industrial
espionage can be found in the literature.3

Obviously, this kind of attack has its limitations: The attacker must be
near the target. Too, except when snooping on analog CRT displays, the
attacker must be armed with expensive and nontrivial equipment, especially
when snooping on today’s low-interference displays and higher CPU and bus
speeds. Still, any such attack is difficult and costly to prevent.

Privacy, Limited

The exposure scenarios discussed so far can be classified as the undesired or
unexpected results of the way a specific technology was designed and
deployed, despite the identical goals or expectations of both the developer
and the end user. In some cases, however, the exposure results in small
differences in the goals and expectations of the two groups. Although
software-level privacy problems resulting from the incompetence or malice
of a programmer are notorious and usually pervasive, more subtle design
problems that are not a flaw per se are also being seen. Some of the more
interesting groups of problems in this area fall into the category of data
disclosure in electronic documents.

Spot

... ...

Vertical
deflection

plate

Line 2
Line 1

Line 3
Line 4

Line X
Horizontal
deflection

plate

Electron gun

Screen
Ten Heads of the Hydra 53

We naturally assume when authoring a document that all information
not related to the document’s contents (and in particular, any information
that uniquely identifies the originator) is hidden from other parties able to
access the document, unless specifically disclosed by the author. But the
days of plain-text editors are long gone. Today’s document formats support
extensive meta-information storage functionality, in an effort to make it
easier to uniquely tag and later index, search, and track documents. What
is worrisome, though, is that the designers of authoring tools often decide
to fill in certain information automatically, frequently giving the author
little or no control over the process and without making them immediately
aware of this practice. Although the practice can be considered just
another exercise in making the environment more user friendly and
transparent to the user, the lack of widespread awareness of this process
is appreciated only by a few.

Tracking the Source: “He Did It!”

One common problem with authoring software is that certain applications
store unique identification tags that make it possible to correlate a document
with its source. In particular, Microsoft Word long used the hardware address
of a computer’s network card (if the computer had one) to construct a
Globally Unique Identifier (GUID) field in a document—be it a cookie
recipe or a terrorist’s handbook. Although the problem has been fixed in the
most recent versions of Microsoft’s Office suite of applications, the practice
has had some interesting implications:

 Every device has a unique hardware card address. Because hardware
addresses are used to locate a specific device on a local network, this
uniqueness is necessary in order to prevent problems that would arise
were two computers with the same hardware address to connect to the
same network. As such, the number recorded in the GUID field of a
Microsoft Word document can be used to uniquely identify the docu-
ment’s author, whether that person wrote the document anonymously
or signed it. This can serve both as a valuable forensics investigation
tool and as an effective way to suppress the freedom of speech in
certain situations (by an employer hunting down whistle-blowers,
for example).

 Hardware addresses are assigned in batches to a specific manufacturer.
Furthermore, in many cases, network cards are manufactured with num-
bers in sequence and then sold in batches to computer manufacturers.
Thus, a knowledgeable person can determine not only who made a spe-
cific card, but also who sold it and to whom. In many situations, it can be
possible to actually track a specific hardware address to an individual
machine and, effectively, to a private entity or a particular corporation.
This might then make it possible for a determined investigator to figure
out the origin of a specific document.
54 Chapter 3

 Because hardware addresses are assigned in batches, it might also be pos-
sible to draw limited conclusions as to the hardware configuration of the
system on which a document was authored. Although this poses a mild
threat, it can be an interesting source of information for the easily
amused or particularly curious.

Some functionality, although accessible to the user, is buried deep
enough within the interface that a typical user is unaware of what is being
saved and how to change these defaults. Productivity software such as
Microsoft Word and OpenOffice.org are notorious for inserting “default
author” information. This information is usually taken from the data
provided with the software license or automatically stored after the first run,
deep inside the metadata in the document where most users do not bother
to look. Although this is a mildly useful feature that comes in handy when
sharing documents, its privacy implications usually far outweigh any eventual
benefit for an end user.

Another example is the “user-friendly” practice of automatically filling
the “title” field in metaheaders of a document based on the first sentence in
the document. This is a nice touch, but the selection is often permanent,
meaning that even if the first paragraph is changed later (so that, for
example, the new business offer is now addressed to a competitor), the
original contents can be deduced by a careful observer. This “feature” once
again exposes more than the author expected to be revealed to the recipient
of a document.

Older versions of Microsoft Word also saved documents without properly
clearing out all the data that had been edited out, effectively providing undo
information, and recording all previous revisions of the text. This informa-
tion could easily be recovered later by any sufficiently skilled attacker with
software to parse object linking and embedding (OLE) containers, the
format in which the editor stores all its data. The problem is particularly
severe when a previous version of a document is reused as a template and
sent to another party, perhaps a competitor. The ability to recover the
previous version of an offer, a motivation letter, or an official response to a
customer is definitely entertaining and enlightening, but not always
desirable for the sender.

Of course, with the recent push for trusted computing and increased
“accountability” for the purpose of reducing piracy, it is reasonable to expect
that it will become commonplace to tag all documents so that they can be
traced to their originator.

“Oops” Exposure: *_~1q'@@ . . . and the Password Is . . .

The last group of problems shared by a variety of text editors is that of
leaking random memory. This type of disclosure is the result of sheer
incompetence or insufficient testing, but it differs from other coding flaws in
that it doesn’t so much render the code vulnerable to an attack, as it divulges
some useful hints to a careful observer. Whether this problem is limited to
Ten Heads of the Hydra 55

the program alone or is caused by systemwide leaks (the latter on systems
with poor memory protection, such as Windows 3.x or 9x), this leaked data
can include such sensitive information as other documents, browse history,
email contents, or even passwords.

The problem occurs when an application allocates a chunk of memory (to
an editing buffer, for example), perhaps used previously for some other task,
and forgets to clear it before reusing it for a wholly different purpose. For
performance reasons, the memory is not always zeroed before being granted
to an application. The application can then operate on and overwrite only a
small portion of the chunk of memory, but write the entire allocated block of
data when saving the file, storing both the data it wanted to and some leftover
contents from who knows how long ago. And, not surprisingly, older versions
of Microsoft Word were once notorious for dumping sizable chunks of
random memory within almost every document produced.

This problem has surfaced a number of times in Microsoft Windows, first
in 1998 on all systems, and then on Mac OS only in 2001. Some anecdotal
evidence suggests other sightings, but those are rather poorly documented.
56 Chapter 3

W O R K I N G F O R
T H E C O M M O N G O O D
Where a question of how the computer may determine the

intent of its user is raised and left unanswered

The beauty of, but also one of the biggest problems
with, any sufficiently extensive and diverse computer
network is that you cannot blindly trust any connected
party to be who they claim to be, and it is impossible to
determine their intentions or the real driving force
behind their actions.

I’ll discuss the issue of confirming the identity of a source in the third
part of this book, when I dissect the architecture of the network and explore
the risks that result from the way a network is built. However, the issue of the
originator’s intentions is a separate and fascinating aspect of computer
security, with often serious and far-fetched social and judicial implications
that extend beyond the world of computing. As we make computers better
and better at predicting what their users want to do (itself a means of
achieving intuitiveness and ease of use) and give them more autonomy, it
becomes increasingly easy to trick machines into becoming a tool to be used
by someone else, instead of helping the user.

A long river of words has been written on the subject, followed by a
number of heated disputes about where to put the blame and whom to sue
when things go wrong. I believe it is important to tackle the problem but not
appropriate to impose any particular viewpoint on you. As such, I will close
this section of the book with a short and mostly technical paper that I
originally published in 2001 in Phrack magazine, vol. 57. I’ve made some
minor edits to it and will refrain from further commentary.

Let me dig it up . . . /me searches for paper . . . Ah, here it is:

==Phrack Inc.==
Volume 0x0b, Issue 0x39, Phile #0x0a of 0x12

|=---------------=[Against the System: Rise of the Robots]=----------------=|
|=---=|
|=---=[(C)Copyright 2001 by Michal Zalewski <lcamtuf@bos.bindview.com>]=---=|

-- [1] Introduction ---

" . . . [the] big difference between the Web and traditional well-controlled
collections is that there is virtually no control over what people can put on
the Web. Couple this flexibility to publish anything with the enormous
influence of search engines to route traffic, and companies that deliberately
manipulate [sic] search engines for profit become a serious problem."

-- Sergey Brin, Lawrence Page [A]

Consider a remote attacker who can compromise a remote system without sending
any traffic to his victim. Consider an attack that relies on simply creating a
file to compromise thousands of computers and that does not require any local
resources to carry it out. Welcome to the world of zero-effort exploit
techniques, automation, and anonymous as well as virtually unstoppable attacks
that result from the ever-increasing complexity of the Internet.

Zero-effort exploits create their wish list and leave it somewhere in
cyberspace where others can find it. The utility workers of the Internet [B] -–
hundreds of tireless, never-sleeping robots, information browsers, search
engines, intelligent agents –- come to pick up the information and,
unknowingly, become a tool in the hands of the attacker. You can stop one of
them, but you cannot stop them all. You can find out what their orders are, but
you cannot guess what these orders will be tomorrow, lurking somewhere in the
abyss of not-yet-indexed cyberspace.

Your private army, close at hand, is picking up the orders you left for them on
their way. You exploit them without having to compromise them. They do what
they are designed to do the best they can. Welcome to the new reality, in which
our AI machines can rise against us.

Consider a worm. Consider a worm that does nothing. It is carried and injected
by others, but does not infect them. This worm creates a list of 10,000 random
addresses with specific orders. And waits. Intelligent agents pick up this
58 Chapter 4

list, and with their united forces they try to attack the targets. Imagine that
they are not too lucky and achieve a 0.1% success ratio. Ten new hosts are now
infected. On every single one of them, the worm does exactly the same thing—
prepares a list. Now the agents come back to infect 100 new hosts. And so the
story goes (or crawls, if you wish).

Agents are virtually unnoticeable, as people are now accustomed to their
presence and persistence. Agents just slowly move ahead in a never-ending loop.
They work systematically. They do not choke connections with excessive data,
and there are no network meltdowns, traffic spikes, or telltale signs of
disease. Week after week they try new hosts, carefully, and their exploration
never ends. Is it possible to notice that they carry a worm? Possibly . . .

-- [2] An example ---

When this idea came to mind, I tried to use the simplest test just to see if I
was right. I targeted, if that is the correct word, several general-purpose
web-indexing crawlers. I created a very short HTML document and put it
somewhere on my home page and then waited for a couple of weeks. And they came
-- AltaVista, Lycos, and dozens of others. They found new links, picked them up
enthusiastically, and then disappeared for days.

 bigip1-snat.sv.av.com:
 GET /indexme.html HTTP/1.0

 sjc-fe5-1.sjc.lycos.com:
 GET /indexme.html HTTP/1.0

 [...]

They came back later to see what I had given them to parse.

 http://somehost/cgi-bin/script.pl?p1=../../../../attack
 http://somehost/cgi-bin/script.pl?p1=;attack
 http://somehost/cgi-bin/script.pl?p1=|attack
 http://somehost/cgi-bin/script.pl?p1=`attack`
 http://somehost/cgi-bin/script.pl?p1=$(attack)
 http://somehost:54321/attack?`id`
 http://somehost/AAAAAAAAAAAAAAAAAAAAA...

The bots followed the links, each of the links simulating vulnerabilities.
Although these exploits did not affect my server, they could easily compromise
specific scripts or the entire web server on a remote system by causing the
script to execute arbitrary commands, to write to arbitrary files, or, better
yet, to suffer a buffer overflow problem:

 sjc-fe6-1.sjc.lycos.com:
 GET /cgi-bin/script.pl?p1=;attack HTTP/1.0

 212.135.14.10:
 GET /cgi-bin/script.pl?p1=$(attack) HTTP/1.0
Working for the Common Good 59

bigip1-snat.sv.av.com:
 GET /cgi-bin/script.pl?p1=../../../../attack HTTP/1.0

 [...]

Bots also happily connected to the non-HTTP ports I prepared for them and
started a conversation by sending the data I supplied in URLs, thus making it
possible to attack even services other than just web servers:

 GET /attack?`id` HTTP/1.0
 Host: somehost
 Pragma: no-cache
 Accept: text/*
 User-Agent: Scooter/1.0
 From: scooter@pa.dec.com

 GET /attack?`id` HTTP/1.0
 User-agent: Lycos_Spider_(T-Rex)
 From: spider@lycos.com
 Accept: */*
 Connection: close
 Host: somehost:54321

 GET /attack?`id` HTTP/1.0
 Host: somehost:54321
 From: crawler@fast.no
 Accept: */*
 User-Agent: FAST-WebCrawler/2.2.6 (crawler@fast.no; [...])
 Connection: close

 [...]

Other than the well-known set of web search engines, a bunch of other, private,
crawl bots and agents run by specific organizations and companies also
responded. Bots from ecn.purdue.edu, visual.com, poly.edu, inria.fr,
powerinter.net, xyleme.com, and even more unidentified engines found this page
and enjoyed it. Although some robots did not pick all addresses (some crawlers
do not index CGI scripts at all, while others would not use nonstandard ports),
the majority of the most powerful bots did attack virtually all vectors I
supplied; and even those that were more careful always got tricked into
performing at least some.

The experiment could be modified to use a set of real vulnerabilities in the
form of thousands and thousands of web server overflows, Unicode problems in
servers such as Microsoft IIS, or script problems. Instead of pointing to my
own server, the bots could point to a list of randomly generated IP addresses
or a random selection of .com, .org, or .net servers. Or, you could point the
bots to a service that could be attacked by supplying a specific input string.
60 Chapter 4

There is an army of robots encompassing a wide range of species, functions, and
levels of intelligence. And these robots will do whatever you tell them to do.

-- [3] Social considerations --

Who is guilty if a “possessed” web crawler compromises your system? The most
obvious answer is: the author of the original web page the crawler visited. But
web page authors are hard to trace, and a web crawler indexing cycle takes
weeks. It is hard to determine when a specific page was put on the Net because
pages can be delivered in so many ways or even produced by other robots. There
is no tracking mechanism for the Web that provides functionality similar to
that implemented in the SMTP protocol. Moreover, many crawlers do not remember
where they "learned" new URLs. Additional problems are caused by indexing
flags, such as "noindex" without the "nofollow" option. In many cases, an
author's identity and attack origin can never be fully determined.

By analogy to other cases, it is reasonable to expect that intelligent bot
developers would be forced to implement specific filters or to pay enormous
compensation to victims suffering from bot abuse, should this kind of attack
become a reality. On the other hand, when you consider the number and wide
variety of known vulnerabilities, it seems almost impossible to successfully
filter contents to eliminate malicious code. And so the problem persists. (An
additional issue is that not all crawler bots are under U.S. jurisdiction,
which differs significantly from some of their counterparts when it comes to
computer abuse regulations.)

-- [4] Defense --

As mentioned earlier, web crawlers themselves have limited defense and
avoidance possibilities, due to a wide variety of web-based vulnerabilities. It
is impossible to simply ban all malicious sequences, and heuristic
investigation is risky: input that is valid and expected for one script may be
enough to attack another. One reasonable defense tactic is for all potential
victims to use secure and up-to-date software, but this concept is extremely
unpopular for some reason. (A quick and nonscientific test: A search at http://
www.google.com with the unique documents filter enabled returns 62,100 matches
for "CGI vulnerability" query [C].) Another line of defense against infected
bots is to use the standard /robots.txt exclusion mechanism [D]. The price you
pay, though, is the partial or complete exclusion of your site from search
engines, which in most cases is undesirable and unacceptable. Also, some robots
are broken or intentionally designed to ignore /robots.txt when following a
direct link to new websites.

-- [5] References ---

[A] "The Anatomy of a Large-Scale Hypertextual Web Search Engine"
 Googlebot concept, Sergey Brin, Lawrence Page, Stanford University
 URL: http://infolab.stanford.edu/~backrub/google.html

[B] "The Web Robots Database"
 URL: http://www.robotstxt.org/wc/active.html
Working for the Common Good 61

[C] "Web Security FAQ", Lincoln D. Stein
 URL: http://www.w3.org/Security/Faq/www-security-faq.html

[D] "A Standard for Robot Exclusion", Martijn Koster
 URL: http://info.webcrawler.com/mak/projects/robots/norobots.html

|=[EOF]=---=|

It appears nearly impossible to fully prevent the automated abuse
without the ability to anticipate and classify the actual intent behind a
particular user action, which is not likely to happen any time soon.
Meanwhile, the number of systems that rely on automated interaction with
other entities increases every year, making this issue perhaps even more
interesting than when I originally wrote this article, particularly with more
and more sophisticated and populous worms hitting the Internet in the past
several years.

Is there a moral to this story or a clear conclusion we should be drawing?
Not really. It is, however, important to remember that machines do not
always act on behalf of their operators, even when they are not clearly
compromised or downright abused to become hostile. Determining the
intent and the place where the desire to carry out a malicious action
originated may be a tremendous challenge, as you’ll see in later chapters.
62 Chapter 4

PART II
S A F E H A R B O R

On the threats that lurk in between the computer
and the Internet

B L I N K E N L I G H T S
Where we conclude that pretty can also be deadly,

and we learn to read from LEDs

The first part of this book focused on various problems
related to the design of the data entry point system.
Those problems were limited to deducing input by
observing seemingly unrelated behavioral patterns by a
user with local access to a system. But as information
moves farther down its path to the addressee and
leaves this system, its exposure broadens, and
problems become more tangible.

The second part of this book focuses on some of the problems that occur
while the data remains within reach, but just after it leaves the originating
system-—moments before it enters the Internet. The exposure discussed
here is limited to roughly the physical footprint of a local area network with
its direct surroundings. An attack at this level requires an observation point
that is local to the origin, but it does not require system-level access.

The specific problem discussed in this chapter is somewhat different from
those discussed previously: the exposure now manifests at the hardware level,
much like in TEMPEST, but is different. The beauty of this phenomenon, and
the ease of observing it with no specialized equipment, more than justify giving
it a closer look.

The Art of Transmitting Data

The need for computers to communicate with other electronic devices has
been apparent since the beginning of practical computing, as has the difficulty
of achieving this task reliably and on a budget. We can control the machine’s
internal communication by providing generous and custom-fit interfaces
among all major components with a desired capacity, maintaining precise
signal characteristics, and using a common reference clock for all operations,
so that the recipient always knows when to listen, and the sender always knows
when to transmit data. But communication over longer distances or to devices
equipped with nonspecialized, cheap interfaces is a different challenge: the
computer is forced to communicate over a medium that usually does not allow
for the degree of freedom we have grown accustomed to working with on the
insides of a single machine.

In fact, the situation is quite the opposite. The customer expects simple,
convenient, practical, and cheap solutions, and requiring computers to be
connected through a $100, 3-inch, 100-wire cable didn’t seem like a winning
solution. Simplicity is a necessity. The core of any external communication
channel almost always relies on the serial transmission of subsequent bits that
only when reassembled and grouped together produce numeric values, text
strings, or other pieces of data native to the machine environment of the
sender or recipient. In the most seemingly trivial and obvious scenario, when
two machines or devices connected only by a pair of wires need to exchange
information, they do so by setting one of the wires to high or low voltage in
relation to the other (reference) line—or by using any other differing signals
or states, for that matter. They do so in order to send subsequent bits of data
at a given frequency—a frequency that must be kept reasonably close and in
sync on both devices.

Even in such a trivial design, a number of problems immediately arise.
First, the devices do not share a reference clock. Although both have internal
quartz-based clocks, no two affordable clocks are ever accurate enough to
maintain reliable and fast communications over an extended period of time
due to slight manufacturing imperfections, interference, and other physical
conditions. And serial communications demand precise synchronization.
The straightforward bit-encoding scheme, usually referred to as Non-Return to
Zero (NRZ), simply outputs one signal (voltage) for 0 and another signal for 1.
In such a system, it is easy to keep both endpoints synchronized when values
change on a regular basis—the system simply needs to detect a falling or rising
edge, use it as a rough reference, and adjust its own clock accordingly. But
given a longer sequence of 1s or 0s, it becomes difficult for the receiving side
to accurately determine how many bits are being sent. In fact, even a small
clock drift can cause problems, and there is no way to compensate for this
during the exchange of a constant sequence of bits.
66 Chapter 5

The obvious solution, to simply interleave the data with a separate,
distinguishable timing signal, is not always the most convenient and efficient
method; increased complexity and reduced throughput is often perceived as
a nuisance.

To effectively address this problem, many systems use a scheme called
Manchester encoding, also known as biphase code. The algorithm for Manchester
coding, shown along with NRZ in Figure 5-1, encodes data using signal
edges, as opposed to signal levels. The original, aforementioned NRZ
encoding uses an internal clock to measure voltage levels at a constant pace,
interpreting low voltage as binary 0 and high voltage as 1. Manchester
encoding, on the other hand, carries data in transitions from low to high
voltage or vice versa. In such a design, the signal is switched to high to denote
binary 1 and to low to indicate 0.*

Although such encoding does not require the clocks to be kept
synchronized, it is also not quite enough as it is: there is no way to encode
two binary 0s or 1s, because it is not possible to go from low to high voltage
twice without returning to low halfway down the road (and vice versa). To
allow this type of information to be encoded, transitions that occur shortly
after a falling or rising signal edge are ignored, thus allowing the system to
encode multiple occurrences of 0 and 1 by returning to the same voltage
midcycle. To manage the “blackout” period after a transition, a simple one-
shot interval clock is necessary.

Figure 5-1: Serial line transmission encodings—NRZ and biphase (Manchester)

The design of a serial line based on the self-synchronizing scheme
discussed above is often extended to provide full-duplex communications in
which both parties can talk at once, either by using two separate lines (transmit
and receive, Tx and Rx for short) or by using advanced echo detection and
cancellation tricks to differentiate between its own signal and the data sent
from the other side. Some mediums require or allow for more sophisticated
signaling schemes, for example sending more than just one bit in every cycle;

* Or the other way around, depending on the transmitter design.

0 1 1 1 0 ...

+5V

0V

NRZ:

Vo
lta

ge

Time (cycles)

0 1 1 1 0 ...

+5V

0V

Biphase:

Vo
lta

ge

Time (cycles)
Bl inkenl ights 67

yet the principle of communications remains essentially the same, and
Manchester encoding over the lowest possible number of wires—often two—
is prevalent across the entire domain.

Equipped with a knowledge of the basics of “wire pair” serial commun-
ications, let’s take a peak at two prominent examples of serial communications
in the world of networking, see how they exchange data internally, and look at
how this information can leak to third parties without the user noticing.

From Your Email to Loud Noises . . . Back and Forth

The most popular long-distance computer communications device is, hands
down, a modem. Initially introduced in the 1950s for the maintenance and
control of certain types of military equipment at remote locations, the modem
brought the Internet to the masses. Although today often considered some-
what obsolete, the modem has given birth to many advanced technologies,
such as affordable high-speed DSL (Digital Subscriber Line) systems or cable
modems. These devices all use clever variations of the same set of techniques
to communicate over phone lines or other nondedicated analog media using
either audible or inaudible signals. The research invested in improving
modems also contributed to our understanding of numerous large-scale
design problems in electronics in general and computer and network design
in particular. Thus, an understanding of how modems work is key to exploring
other, perhaps more up-to-date, methods of long-distance data transmission.

The universality of the telephone line makes it a natural medium for
computers to use for communication. Phone lines can be found almost
anywhere, and phone systems provide excellent call-routing capabilities,
making it possible to reach just about any location with little if any effort.
There is a tiny caveat, though: phone lines were meant to carry the human
voice, transmitted as a waveform, within narrow-frequency response range
(usually not exceeding several kHz). Because these frequencies were
recorded as voltage changes over a pair of wires and relayed through a
number of analog repeaters and amplifiers, the standard of quality for the
transmission wasn’t particularly high. It had to be just good enough for
people to hear and understand each other, and because the human brain is
a superb signal filtering and processing system, occasional noise or sound-
level fluctuations were not much of a concern—not until much later on,
when customers grew a bit picky.

Computers, on the other hand, are generally engineered to exchange
binary information, which is encoded using fairly precise voltage levels over
well-designed, short lines with good signal characteristics and low
capacitance—an exact opposite of long-distance, poorly shielded telephone
lines with inadequate signal characteristics. Computers also need to talk
much faster and much more than humans usually do. As such, modem
designers had (huge understatement here) a difficult challenge to solve:
They had to determine a way to encode bits of data not only in a manner that
could be efficiently transmitted to a remote system over the wire (something
68 Chapter 5

that Manchester encoding made a bit easier), but also as audible signals that
could be accurately distinguished at the other end of the line regardless of
often entirely unpredictable voltage changes and other transmission artifacts.
They had to employ robust error-correction algorithms and variable
transmission speeds to compensate for poor line quality, occasional cross
talk, trucks going over a buried phone line, birds building a nest on a pole,
and so forth. The designers nodded, scratched their heads, and after
perhaps just 40 years brought us an affordable and fairly fast method for
computer-to-computer communication. Let’s take an abbreviated look at
how this developed and how the technology matured—yet essentially stayed
the same—over the decades that followed.

The history of commercial modem development and standardization
began in the 1960s when two standards, Bell 103/113 and V.21, were
conceived. Both standards provided an amazing (for the time) 300-baud
(bits per second) full-duplex connectivity using a technique called frequency
shift keying (FSK). FSK is a mysterious-sounding term that happens to stand
for a rather trivial signal-encoding scheme: it uses two different tones to
denote different values, one frequency for “low,” and another frequency for
“high.” The advantage of using audible frequencies over other types of
signaling is rather significant: this is the only type of signal that can be
relayed through the phone system fairly well—after all, this is what the system
was designed for. All other signals are more or less destined to be trashed
beyond recognition before reaching the other end of the wire, in the best-case
scenario, or being immediately filtered out by bandpass filters somewhere
down the line in the worst case.

In addition to FSK encoding, the aforementioned Bell 103/113 and V.21
standards split the frequency range that could be transmitted over phone
lines in two: one of the modems, the caller, used a frequency of 980 Hz to
encode low and 1,180 Hz to encode high. The other end, the answerer, used
the higher part of the spectrum: 1,650 Hz and 1,850 Hz, respectively. Why
split the frequency in this way? Because a phone line is essentially just a pair
of wires, which can be used for transmission by two devices simultaneously
(full duplex), but only if they are capable of dealing with the fact that their
respective transmissions would superimpose on each other. In full-duplex
communication, each device must be able to distinguish its own signal from
the data it’s receiving and filter it out. If it cannot do so successfully, each
device would have to pause while the other end is talking (simplex mode),
severely impairing the already sort of unimpressive throughput. By splitting
the frequency, the phone line is essentially made to carry what it sees as two
different “voices,” thus ensuring that simultaneous communication can
occur with no collisions.

It took 25 more years for modems to take another step in the right
direction. The next major set of standards, Bell 212A and V.22, took a big
leap forward and dropped frequency shift keying in favor of differential phase
shift keying (DPSK). Rather than change the frequency of a wave, DPSK shifts
its phase to signal different values.
Bl inkenl ights 69

The phase shift technique essentially introduces a minimal time shift, or
delay, that causes the output audio signal to be slightly out of sync with the
original reference wave, while maintaining exactly the same shape (see
Figure 5-2).

Figure 5-2: Frequency shift versus phase shift

The value of the phase shift, also called the shift value, is expressed in
degrees (a reference to its effect on trigonometric functions: y = sin(x)
shifted by 90° is exactly the same as y = sin(90° + x). A shift value of 360°
denotes a shift by the entire wavelength, which simply puts the waves right
back in sync and has no effect on the waveform. The correspondence of
various phase shifts is shown in Figure 5-3, on the left.

Once both parties are synchronized and have a way to compare the
signal received over the cable with the expected waveform, the actual
encoded data can be easily retrieved. A differential circuit can compare two
signals, subtract them, and easily determine the exact phase shift of the
signal, by comparing it to a reference signal, as shown in Figure 5-3, on the
right.

The new standard also took advantage of a more advanced data-
encoding method. Instead of simply using two alternating signals to transmit
0s and 1s, as was the case previously, V.22 encodes whole dibits—slang for
pairs of bits. Encoding two bits at once can be achieved using four phase shift
values, with the amount of shift used to denote each of the possible values
chosen so that values are uniformly and possibly farthest spaced through the
entire 360° spectrum—and thus easily distinguishable from each other (see
Table 5-1).

Frequency changes (increases)

Frequency does not change, but is shifted
in comparison to the reference frequency

Phase shift encoding

“Low” Value

Frequency shift encoding

Reference
frequency
peaks

“High” Value
70 Chapter 5

Figure 5-3: Phase shifted signals (left) and a result of subtracting a reference waveform to
more easily distinguish between phases (right)

The use of dibits allowed for significantly faster transfer speed (1,200
baud) without the need to increase the physical rate with which the actual
signal was modulated. Twice as much information—twice as many bits—was
carried within every single beep.

NOTE Although it is theoretically possible to use such an extended alphabet—that is, compos-
ite signal units similar to dibits (that have more than two states and thus encode more
than one bit at once)—with FSK encoding as well, it is a bit more problematic to do so.
FSK signals must avoid subharmonics and other frequencies that are particularly
prone to distortion when sent through phone systems, thus severely limiting the set of
possible states. The advantage of DPSK over FSK is that it uses a fixed frequency that is
known to cause the fewest transmission problems and, hence, can be used more reliably
at higher transmission rates.

Table 5-1: Using phase shifts to encode two bits of data (dibit)

Dibit Phase Shift

00 90°
01 0°
10 180°
11 270°

Reference signal

Phase 0˚

Phase 90˚

Phase 180˚

Signal - reference

Signal - reference

Signal - reference

Flat signal–zeroed out
Subtraction

Subtraction

Subtraction
Bl inkenl ights 71

In the next few years, the pace of research accelerated a bit, and a
number of new standards surfaced. The V.22bis standard took the concept of
wide alphabet signaling a bit further, combining DPSK with signal amplitude
(loudness) modulation to build a two-dimensional set of 16 possible values.
The transition from a measured signal to binary values was expressed using a
two-dimensional table. The value to which a signal corresponds is obtained
by first looking up the column, based on the measured phase-shift value, and
then the row is looked up based on the amplitude measurement. A simplified
but analogous two-by-four example is shown in Table 5-2.

To add to the confusion, this new approach was called quadrature
amplitude modulation (QAM). QAM once again made it possible to go from
1,200 to 2,400 bps without actually improving signal modulation speed, but
by extending the number of meanings a single atom of signal can have.

The next major evolutionary step was V.32. V.32 was the first design to
introduce a novel concept: instead of splitting frequencies, it used advanced
echo cancellation circuitry* to detect and subtract the signal transmitted by
the device itself from the data received over the wire. This technique allowed
both devices (sender and receiver) to use the entire frequency spectrum,
instead of just half of it, while still doing full-duplex.

Development continued, and the V.34 protocol soon appeared. Although
the rate at which the signal could safely alternate before introducing excessive
distortion did not noticeably change over the years, the standard was consider-
ably faster than its predecessors. V.34 achieves a throughput of 28,800 baud,
sometimes pushed a bit further by manufacturers to a unofficial speed of
33,600 baud (33.6 Kbps) by sending only about 2,500 to 3,500 signal samples
(alphabet symbols) per second; however, it combines four different
encoding schemes to build a four-dimensional structure with 1,664 possible
states, making it possible to send as many as 41 bits at once. As it turns out,
it’s not about raw speed but how you use what you’ve got.

It is widely believed that the V.34 standard and its derivatives approach
the theoretical limit for transmission of data via the voice-oriented telephone
system. Although this may seem an odd statement given the prevalence of 56
Kbps modems, there is a catch: 56 Kbps devices achieve this transmission rate
in a wholly different way than in analog solutions. Given that most phone
systems have migrated from analog to digital since modems were first

Table 5-2: Two-dimensional encoding of three bits using two distinct signal
parameters

Phase 0° Phase 90° Phase 180° Phase 270°

Low amplitude 000 (0) 001 (1) 010 (2) 011 (3)

High amplitude 100 (4) 101 (5) 110 (6) 111 (7)

* Echo cancellation circuits attempt to distinguish signals being sent by the device itself from
those coming from the other party, and to eliminate or significantly reduce the former. Various
types of such devices are commonly used not only in digital data transfer, but also to improve
phone call quality, eliminate microphone feedback during public events, and solve many other
everyday problems.
72 Chapter 5

developed, and because most dial-up providers can now interface their
systems directly with digital telecommunication systems, service providers
can return to the most obvious but, until recently, impossible solution:
changing line voltages instead of shifting frequencies when sending data to a
subscriber. Because the signal is carried as digital data from the beginning—
and can travel over buried copper lines only till the nearest telco facility—
there are virtually no signal quality problems, and the only limit is the voice-
carrying capacity designed into the phone system hardware. Working at 8,000
symbols per second, but operating with a considerably smaller alphabet
(usually about 128 symbols, or voltage levels), it is possible to send data to a
subscriber who is connected to a digital phone system with high-quality wire
using a 56 Kbps modem at a higher speed than usual. The upstream transfer is
still implemented the old-fashioned way, though, and is considerably slower; as
such, the modem is only partly 56 Kbps, and only when conditions permit.

The Day Today
Not much has changed since the conception of modem technology. As
transmission protocols advanced, so did the error-correction and fallback
mechanisms needed to ensure reliable transmission when your favorite
quadruped decides to chew the phone cable. A jungle of standards were
spawned: V.42 provided a basic CRC (cyclic redundancy check) implemen-
tation, MNP-1 to MNP-4 provided proprietary error-correction algorithms,
V.42bis and MNP-5 provided integrity checking combined with compression,
and so on. But the real revolution is yet to come.

Or is it? You might argue that DSL and cable modems are a revolutionary
technology that has changed the world. I am willing to argue: in fact, they are
quite similar to their older cousins, modems. The only significant difference
between the two is that the other endpoint—the server that handles all
connections—has moved from a distant city where the service provider is
located to the nearest local telco facility, and the connection to it can be made
directly using the copper wire coming from the customer’s residence or
business. Because that direct connection again does not go through any other
equipment, these devices can use high, inaudible frequencies and subtler
signals that would otherwise be distorted or not relayed at all over the
telephone network. In contrast, the good old modem was strictly limited to a
narrow range of audible frequencies and signals that the phone system was
intended to carry and that it could carry well. In many ways, DSL devices have
it much easier than the old modem.

As we see, designing a modem is actually quite a complex and difficult
task; that’s why it took us decades to advance from bulky and expensive 300-
baud devices to where we are now.1 Surprisingly, all these devices can talk to
one another, even to devices ten years older, even at the lowest speeds we
long forgot about. Too, all are usually aware of the standards known to date,
including the dozens of alternatives and forks of each. Doesn’t that make
modems even more a marvel of computer engineering?

But who pulls the strings?
Bl inkenl ights 73

Sometimes, a Modem Is Just a Modem

Modem-to-modem communications is, of course, not where the story starts
or ends. The modem is just a piece of fairly inert middleware that’s hardly
even a good paperweight. For a modem to be of any use, it must be able to
communicate with a computer to receive commands and exchange data,
even when it’s only being used for something as feeble as random web
browsing. Internal modems have it easy: ISA (Integrated Systems Archi-
tecture), PCI (Peripheral Component Interconnect), PCMCIA (PC Memory
Card International Association), and some other dedicated buses provide
high-speed and fairly generous parallel interfaces that make the commun-
ication process almost trivial.

External modems (of the analog or DSL kind), however, have to do
things the hard way, with a serial link. Most analog modems use the well-
known serial protocol RS-232 (renamed in the ’90s to the much more
descriptive EIA/TIA-232-E2); many newer ones use USB (Universal Serial
Bus). As we get close to the information disclosure scenarios in those
devices, we want to get a glimpse of what happens to the data on its way
between the modem and the computer, too, because that plays a crucial
role in the attack.

Although external modems have to use inhumane means of commun-
icating not only with a remote system, but also with the local machine itself,
thanks to the proximity to the computer and the fact that interfaces such as
RS-232 are digital and were designed for use by computers to start with, this
stage is still much simpler than the phone line modulation and demodu-
lation for which bit modems became famous.

RS-232 uses a fairly straightforward implementation of bipolar encoding
for the data exchanged over two separate lines and backs this with a set of
NRZ control lines. To make life a bit more interesting, RS-232 comes with a
multitude of link or protocol features that make it fairly difficult to imple-
ment from scratch: its asynchronous nature, a wide array of possible settings
and speeds, and unusual voltage levels. But with all this, RS-232 still does not
even come close to a real challenge for an implementator who had dealt with
signal modulation over phone lines.

USB, on the other hand, attempts to standardize and unify the serial
interface. Although USB requires higher-end circuitry than RS-232 in
order to interface a computer with a device (because of, among other
things, a higher level of abstraction and higher supported transmission
speeds), the USB is universal (hence its name) and has fewer oddities
and legacy features.

Last but not least, a common method of communicating with local
devices is the use of Ethernet, a mechanism somewhat similar to, but
predating, USB. Let us look at Ethernet for a while now, and I am sure all
those communication protocols will eventually meet in one place.
74 Chapter 5

Collisions Under Control

Ethernet networks are, in essence, an advanced type of a multiparty serial link.3
An Ethernet network is composed of a number of computers connected by a
shared medium—nothing particularly complex, in its most basic form, just a
pair of fairly regular wires. When a device on the network uses the medium,
it applies a specific voltage to the wire, and all other connected systems can
interpret the data by measuring the voltages. A set of checks ensures that
devices do not try to use the link at the same time and that recovery is
smooth if an accident happens. Still, even considering this possibility, the
basic design is unbelievably trivial, compared with modems.

To work around the problem of two parties talking at once, a standard
named Carrier Sense Multiple Access with Collision Detection (CSMA/CD)
is used as the core mechanism controlling all communication via Ethernet.
Before sending any data, every device connected to Ethernet follows a CSMA
procedure to see if another device is using the cable by checking the
modem’s electrical properties. If no other transmission is occurring, the
device enters the transmission phase and beams its data out to the masses.

In this phase, the data is sent on the wire as a sequence of bits using
bipolar encoding; the traffic contains a header with all the necessary sender
and recipient information and a proper checksum intended to protect the
integrity of the data in case of external or internal interference, quadruped
or not. A network interface that considers itself to be acting on behalf of a
recipient, presumably by comparing the observed destination address
provided in the packet with its unique MAC (hardware) address stored on
the card, should accept this traffic and verify the checksum. At the same
time, all other parties should ignore this frame; naturally, if they do not (and
almost every card can be instructed not to), the user can view or react to
traffic addressed to others. (You can see how Ethernet was designed in the
spirit of far-fetched trust and altruism—a noble but risky approach.)

It is possible (and not very unlikely) for two devices on an Ethernet
network to start sending at exactly the same moment, even though both
checked just microseconds or nanoseconds ago for another party transmitting.
And, if they do transmit at exactly the same moment, a disaster is bound to
happen. Two transmissions are mixed up and mangled, and the sent data
should fail the checksum test at the destination . . . or should it?

Although the use of a checksum implemented within the Ethernet frame
specification is typically sufficient to verify data transmission accuracy, it may
not be particularly effective if the link is saturated and hundreds or thou-
sands of collisions occur in a short period of time; it is just small enough to
accidentally come out correct from time to time. The law of probabilities tells
us that some damaged packets will—just by chance—have the same check-
sum as an original packet. Furthermore, even if we ignore the problem of
checksum deficiencies, we still want to stop collisions as soon as possible—by
Bl inkenl ights 75

just letting collisions run rampant, you might find that you are no longer
able to ensure the timely retransmissions of mangled and dropped frames in
your network. After all, the sender sent it with no indication of a problem,
and the recipient did not receive anything even remotely resembling a useful
packet.

The solution comes with the latter part of the standard: collision
detection (CD). The specification calls for the sender to monitor the network
link while explaining their business to others. If another party is caught trying
to talk at the same time, that should be detected (again, with a simple
measurement of the electrical properties of the line), and the transmission
should be immediately aborted. The device should also send a special jam
code to ensure that both frames (the one being sent and the one that
interfered with it) will be unconditionally dropped, without even getting to
the checksum verification; the recipient should be able to spot the jam code
and stop the reception of data being processed. The device then idles for a
gradually increasing and preferably (initially) random period of time after
every attempt (called retransmission backoff), to minimize the likelihood of a
subsequent collision.

NOTE A fun fact: The jam code mechanism imposes an unusual requirement on the protocol.
All frames must have a minimum (!) length, with the value calculated such that it
allows the jam code to be generated and propagated to all machines before the transmis-
sion is completed. With very short frames, there may not be enough time to achieve this.
Hence, the sender is required to artificially pad all their outgoing transmissions.

Figure 5-4 shows the exact sequence of events in a typical collision
scenario. As you can see, Sender A hopes to send data to the recipient but
notices another transmission occurring, at which point they decide to wait
until that transmission stops. Sender A then prepares to send the data but,
unfortunately, Sender B does the same, and both conclude that it is safe to
send data at nearly the same time.

Both attempt to transmit, data gets mangled, and at that point both
detect the other transmission and quickly send a jam code to instruct the
recipient to disregard this frame. Finally, both senders back off for a random
amount of time and hopefully manage not to start simultaneously the next
time around.

Behind the Scenes: Wiring Soup and How We Dealt with It

Although not an example of a particularly scalable or elegant design, the
Ethernet protocol is amazingly powerful and easy to deploy; it enabled the
building of cheap peer-structure networks using coaxial cables just about
anywhere. As such, it has become a de facto standard, replacing many other
(and sometimes superior, but more expensive or proprietary) networking
architectures.
76 Chapter 5

Figure 5-4: The stages of a typical Ethernet conversation

Naturally, simple Ethernet over coaxial cable had its limits and dis-
advantages; it was essentially based on a long piece of wire with devices
hooked up to it at various locations, and with resistors on both ends, not
something you'd want to be responsible for maintaining in a large office. A
simple and difficult-to-debug mishap, such as a shorted terminal, could bring
the entire infrastructure down. A more advanced—but only marginally more
expensive—replacement was warmly welcomed.

Electronic multiport repeaters (hubs) made it possible to run wiring
without much effort using twisted pair wiring (Cat-3 and Cat-5 cables with
RJ-45 connectors). To use them, you simply plugged a piece of wire from
your machine into a black box, and all other devices connected to this black
box could communicate with it without much consideration of electrical
problems or the risk that a single cable failure would bring down the entire
network.

Hubs are, in essence, simple repeaters that broadcast all traffic received on
one port to all other ports. They make it possible to build easily reconfigurable
and more reliable star-type networks, but they do little else. As the network
grows, the cost of broadcasting every bit of information to all locations, and the
fact that only one party can talk at once across the entire network, makes it all
too evident that the simplicity of this design is its major weakness.

Switches turned out to be the solution. Switches are the next generation of
hubs. Equipped with a decent processor and some memory, they’re a more
expensive alternative to hubs that provide, under normal circumstances,

Sends data

Receives data

SENDER A

SENDER B

RECIPIENT

SENDER A

SENDER B

RECIPIENT
...?

SENDER A

SENDER B

RECIPIENT

SENDER A

SENDER B

RECIPIENT

Wants to send,
but detects
signal and waits

Also wants
to send

Activity gone,
prepares to send

Sends data

Collision!

Receives
mangled data

Sends data

Notices other
signal, sends
jam code

Receives jam
code, drops data
received so far

Notices other
signal, sends
jam code

Waits for a
random time

...

SENDER A

SENDER B

RECIPIENT

SENDER A

SENDER B

RECIPIENT

SENDER A

SENDER B

RECIPIENT

Waits for a
random time

Still waits...

Retransmit time!
Sends again

Receives data

Signal gone,
sends

Receives

Back to idle

SENDER A

SENDER B

RECIPIENT

Wakes up, but
notices another
signal, waits

Still sends...

Still receives...
Bl inkenl ights 77

additional high-level analysis of Ethernet frames. This analysis associates
hardware addresses with specific ports and optimizes frame routing by
delivering certain packets directly to the appropriate port (in unicast mode),
instead of broadcasting them to all parties (see Figure 5-5). This greatly
improves performance in more extensive networks.

NOTE Another fun fact: Real hubs are almost extinct nowadays. Almost all 10/100 Mb
devices marketed as hubs actually use basic switch chipsets; it is simply cheaper to
repackage the chip than to develop and maintain several variants.

Figure 5-5: Hubs versus switches in local networks

I’m guessing that at this point you’re asking yourself, Where the heck are
you going with all this? What do modems have to do with information
disclosure? What significance do serial links have in this context? How do
Ethernet networks fit in? And what the heck are blinkenlights?

Glad you asked. I am about to get there—to the last question, that is.

Blinkenlights in Communications

Historically, almost all refrigerator-sized computers were equipped with
numerous prominently exposed diagnostic interfaces. These included arrays
of tiny lights that displayed, among other things, certain arcane properties of
the internal state of a machine, such as internal registers or flags of the core
processing unit or an indication of whether the cat living underneath had
been fed today. As computers became more reliable and compact, and an
average user no longer had to understand the machine’s internals in order

Sender

abc

Recipient

abc

Bystander 1

?

Bystander 2

?

Sender

abc

Recipient

abc

Bystander 1

Hub
Switch

abc

Bystander 2

abc
78 Chapter 5

to use it efficiently, the lights started to disappear from many devices. Ever-
increasing clock speeds also contributed to the decline—most of the time it
was no longer possible for humans to get any meaningful information from
such a visual signal that would change thousands or millions of times every
second.

Yet, the lights prevailed in some applications; for example, almost all
networking devices feature light-emitting diodes (LEDs) on their front or
back panel. These provide link diagnostics, such as an indication of whether
a particular module or socket is functioning properly, a party is connected,
data is being transferred, and so on. The lights are not merely a diagnostic
tool either; their hypnotic patterns have strange appeal, and their mystery
plants seeds of uncertainty, fear, and respect in the hearts of lay people who
enter the realm of the server room.

The term blinkenlights or blinkenlichten has been used to describe the much-
adored institution of diagnostic LEDs on computer equipment ever since the
dark ages of computing, bathing the computer geek in the soothing green
light during those long, lonely nights spent at the terminal. It came from an
amusing prank note in mock German (itself a spoof of another, noncomputer
joke from WWII), displayed some time in the 1950s at IBM laboratories. The
note later propagated into a majority of server rooms and computer science
laboratories across the world and went like this (as quoted from Eric S.
Raymond’s Hacker’s Dictionary):

ACHTUNG!

ALLES LOOKENSPEEPERS!

Alles touristen und non−technischen
looken peepers! Das computermachine
ist nicht fuer gefingerpoken und
mittengrabben. Ist easy schnappen
der springenwerk, blowenfusen und
poppencorken mit spitzensparken.
Ist nicht fuer gewerken bei das
dumpkopfen. Das rubbernecken
sichtseeren keepen das cotton−pickenen
hans in das pockets muss; relaxen und
watchen das blinkenlichten.

Communications equipment is one of the last domains in which blinken-
lights prevail and prosper. But that’s not all. Almost all these devices use serial
lines for communications. And, for the sake of simplicity and aesthetics,
“activity” LEDs are sometimes wired almost directly, through a simple driver
circuit, to the transmit or receive line of the device. Curtain falls.
Bl inkenl ights 79

The Implications of Aesthetics

It took decades for the problem to be discovered, and once it happened (in
2002), it struck us all as so obvious and trivial we wanted to bang our heads
on the keyboard a couple of times.

Joe Lughry and David A. Umphress, in a research paper titled “Informa-
tion Leakage from Optical Emanations,”4 discovered a new type of signal-
disclosure scenario in certain types of network equipment, most often
modems. They concluded that someone observing these lights could go
beyond simply watching the magic lights with the naked eye.

LEDs, unlike incandescent bulbs, usually have short rise and fall times,
meaning that they turn on and off almost instantly. That’s not surprising;
after all, high-end LEDs are used to control fiber-optic links and some other
optoelectronic communication channels. As such, the blinking of an LED
hooked up to a serial data transmission line can actually often mirror single
bits of the transmission as it occurs on the wire. Given a way to record this
activity at a sufficient speed, it should be possible to retrieve this information,
from at least as far as you can see the tiny blinking light on a device with the
naked eye (or with a telephoto lens).

This research caused some stir in the industry; it was eventually also both
downplayed and overhyped, and hence a great deal of confusion ensued, and
very little has changed. The paper resulted in many conflicting reports, but its
basic premise is simple and truly beautiful. The beauty of this technique is that
it is trivial to devise such a device to receive the signal: the equally cheap and
popular counterparts of LEDs—photodiodes and phototransistors—are easy
to acquire and equally easy to interface with the computer. And the exposure
zone, unlike most of the TEMPEST activity we discussed in Chapter 3, is not
merely the subject of urban legends and pure laboratory results, but can be
directly observed and measured.

In the course of their research, the authors performed a set of experi-
ments to verify that the signal could be successfully acquired from as far away
as 20 meters (just under 100 feet) without the need for additional digital signal
conditioning. And common sense suggests that this might actually be an
understatement, especially when good optics are used. (The authors used a
100 mm focal length, f/2.0 lens for the test, but a much better telephoto lens is
commonly available to many midrange SLR (single lens reflex) photography
amateurs. Those who are willing to part with their money can buy a superb-
quality lens with a focal length of as much as 1,200 mm.)

The paper takes a defensive stance in several cases, and a careful reader
might be tempted to conclude that some of the devices classified are not
vulnerable to the problem. In particular, some of the Ethernet devices may
exhibit a more subtle variant of the vulnerability, as you’ll see in the prevention
section later in this chapter. But first let’s peek at the problem with our own
(computerized) eyes, shall we?
80 Chapter 5

Building Your Own Spy Gear . . .

The simplicity of building a snooping device makes it quite tempting to do so.
This section contains several suggestions and rough schematics on how to
build and connect such a device to an ordinary computer. Although the circuit
is not particularly complex and does not require a master’s degree in soldering
and a printed board circuit design software, a minimum level of proficiency in
electronics is desirable, as is a dose of common sense. Although external
interfaces of today’s computers are fairly robust and foolproof, there is always
the risk of damaging equipment when attaching home-brew devices in a really
innovative way, in a brief moment of insanity. It’s happened to the best of us.

The baseline design is extremely trivial. It calls for a single phototransistor
(a component consisting of a transistor driven by a built-in photodiode), a
regular low-power NPN (Negative-Positive-Negative) transistor to amplify the
signal a bit further (not always necessary), and a set of potentiometers
(perhaps in the range of 10 k just to have enough flexibility) to experimen-
tally pull down the voltage and control the circuit’s sensitivity and threshold
points. There are no particular requirements for the components, although
your mileage will vary depending on which ones you use. Be sure to select a
phototransistor that has a decent response in the visible light range, though all
cheap ones should work. (For reference, a green LED emits a wavelength of
approximately 520 nm.)

A sample circuit design is shown in Figure 5-6.

Figure 5-6: A simple receiver circuit

The circuit has an optimal running voltage of approximately 5V and a low
maximum current: a power supply capable of delivering perhaps 10 to 50 mA
is more than enough. A word of warning: If you use a supply capable of
delivering a higher voltage, you will risk damaging the port or the computer;
likewise, if you use a more powerful supply and do not prevent higher current
from flowing through the circuit.

NOTE Setting Rvar1 or Rvar2 to a very low resistance may short the circuit. If you want to
fiddle with the knobs mindlessly, it might be a good idea to add a fixed resistor to limit
the current drain.

Vcc

Rvar1

2N2222
or any similar NPN

BP 109
or similar

To computer
Rvar2

GND
Bl inkenl ights 81

You must shield the phototransistor from external light sources—for
example, by enclosing it in an opaque tube. Because the phototransistor has
no focusing mechanism, it is not likely to pick up more distant signals (other
than ambient light). Thus, for initial tests, it is a good idea to cover it entirely
to simulate darkness and then put it by an LED to excite the circuit. You can
also connect another LED temporarily between the GND and the output line
to test the circuit. The test LED should light up when the sensor is directed at
a light source, but otherwise be fairly dark.

. . . And Using It with a Computer

If the circuit with a test LED hookup works so far, well done; you have built a
fancy TV remote tester. Because generic, cheap phototransistors are eager to
pick up infrared light, your creation should “translate” IR (infrared) into
visible light, but that’s about all the fun stuff it will do. To make it a bit more
useful, you need to interface the circuit with the computer. A good way to do
so is through a line printer interface, LPT, if your computer has one. Unfor-
tunately, this wonderful hardware hacker’s tool is being dropped from some
of the more compact and fancy designs.

Although initially designed to be unidirectional (for output only), the
LPT interface provides a number of status feedback lines, such as “paper
out,” “busy,” and “acknowledgment,” that were intended to provide a means
for the printer to complain about problems. You can easily read the data that
issues through this interface by accessing port 0x379 (the LPT1 status
register) on a PC-compatible system. By hooking the circuit to a parallel port,
you can easily transmit information back to the computer. Although you
might want to connect the circuit to a different interface, LPT is much faster
than, say, RS-232, and you won’t have to cope with any mundane protocols,
signaling schemes, or unusual voltage levels. Too, unlike USB and some
other current solutions, you do not need special controllers to implement a
fairly complex protocol to even be able to talk to your PC.

NOTE Although LPT also offers bi-directional operation modes (ECP or EPP), it is usually
pointless to attempt to use this functionality for such a simple task. In the unidirec-
tional mode, four bits are available for input, more than enough for this application;
switching to bi-directional modes such as EPP or ESP provides an extra four bits.

It is up to you to choose the status line to use. Table 5-3 shows a pin
layout of the DB25 connector used for a printer port. The rows shaded gray
can be used for input.

To interface the circuit with this port, you can simply connect the
ground reference point on the connector with the one used in your circuit
and then hook up the output line to any of the five pins. (Remember to
disconnect the LED used for diagnostics first.) Next, monitor the status port
as you first expose it to light and then cover the sensor. In either case, the
value read depends on how you hooked up the circuit; the exact value does
not matter, as long as the two values are different.
82 Chapter 5

Because chip logic requires somewhat different input levels than your
test LED diode, you might have to tweak the Rvar2 until you get distinct
readings from the port when you cover the sensor, and when you expose it to
light. To accomplish this, it is best to be able to monitor the port in real time
on the computer itself.

The way you can monitor the state of the port will depend on the
operating system and the programming language you are using. If you’re
using C, the function used to read the value off a port is inb(port), so in this
particular case you would issue inb(0x379) and check the return value. In
other languages, it is likely to have a similar name. (Try looking for in, inport,

Table 5-3: LPT pinout

LPT Port: DB25 Pinout (Standard Mode)

Pin Name Function

1 Strobe Control output bit 0

2 D0 Data output bit 0

3 D1 Data output bit 1

4 D2 Data output bit 2

5 D3 Data output bit 3

6 D4 Data output bit 4

7 D5 Data output bit 5

8 D6 Data output bit 6

9 D7 Data output bit 7

10 ACK Status input bit 2

11 Busy Status input bit 3

12 Paper Out Status input bit 1

13 Select In Status input bit 0

14 Autofeed Control output bit 1

15 Error Status input (unused)

16 Init Control output bit 2

17 Select Control output bit 3

18 GND Ground (0V)

19 GND Ground (0V)

20 GND Ground (0V)

21 GND Ground (0V)

22 GND Ground (0V)

23 GND Ground (0V)

24 GND Ground (0V)

25 GND Ground (0V)
Bl inkenl ights 83

readport, and so forth.) Also, Windows users may find the built-in “debug”
utility and its “i” (port read) function quite handy.

NOTE On some systems, such as Linux, you might need to request that the system give you per-
mission to access a specific port first. Consult the documentation for iopl(3) or a simi-
lar call for more information.

At this point, you are ready to go. You can choose to point your probe at
any LED on a device, adjust the sensor based on its brightness, and start
reading alternating patterns of light and dark signals, as you discover how
they correspond to the exchanged information, if at all.

NOTE If you’re curious, you might try to examine the brightness of the indicator diode, not
only a binary representation of its state. It might turn out that even though a specific
LED is not intended to directly map a signal on the serial line to its blink patterns,
there is some analog cross talk between circuits, and the serial line signal will have some
influence on the brightness. A cheap analog-to-digital converter such as TLV571 from
Texas Instruments is just asking to be used this way.

You can use this approach to sample the frequency of less than 1 million
bits per second, which should suffice for capturing transmission on many
interfaces, but not necessarily on Ethernet ports (which transmit at least 10
million bits per second). Past this capture capacity, your LPT port will likely
reach its physical throughput limits, but do not despair: as long as the sensor
(phototransistor) can switch at the rate sufficient to capture communications
in question, you still have an option. Remember that LPT is a parallel port. To
reach faster capture speeds, such as the one needed for Ethernet, combine a
trivial clock, a counter circuit, and a set of sample-and-hold latches (such as
74LS377) to sequentially store data between the port read attempts on the
computer side. You can accumulate this information for a short period of time
and then, by using more than just one status pin (or by switching the port to bi-
directional mode), easily send several bits—samples—to the computer, in a
single burst, in one read cycle, thus improving the read rate four- or eightfold.

I’ll spare you a further, perhaps needless, excursion into the world of
electronics. If you want to toy with the idea of high-speed or analog sampling,
or perhaps just get your kicks from soldiering stuff together and hooking it to a
computer, you might want to take a look at my fairly comprehensive introduc-
tory tutorial under the thin disguise of a computer-controlled robot design
project. You should be able to find it at http://lcamtuf.coredump.cx/
robot.txt.

And now, for those with interests that lean more toward practical
security: a brief discussion of how to address the issue, short of covering all
LEDs in the office with duct tape.
84 Chapter 5

Preventing Blinkenlights Data Disclosure—and Why It Will Fail

The easiest solution to the problem, and one suggested by the original
research, is pulse stretching—a practice intended to distort the blinks on an
indicator by prolonging some of them, thus making any practical data
recovery seemingly not feasible. Pulse stretching circuits are a group of fairly
trivial devices that extend the duration of an encountered “high” input
signal for an additional period of time. Most basic pulse stretcher design
relies on a capacitor that charges in the presence of an input signal and then
discharges slowly. This capacitor is connected to a binary discriminator, which
is not a nickname for a vicious wrestling champion, but rather a device that
converts analog data into binary output by applying a particular threshold
(outputting a voltage for logical 1 for all input voltages above n, and 0 for all
input voltages below). In this case, it uses a certain capacitor charge level as
the discrimination point.

More advanced and reliable designs, including purely digital circuitry,
are also common, and all can be used in hubs and switches to make LEDs
nice to look at. Without them, the high-speed blinking at way more than 50
cycles per second (considered the limit on our ability to perceive flicker),
would usually result in our seeing the lights as dim but seemingly constant. A
discriminator causes the LED to be driven by 1 more often than by 0 by
extending the duration of each 1 pulse. This makes the LED light brighter
and blink less often. Figure 5-7 shows the behavior of such a pulse stretcher:
a single spike (single 1) is stretched to last three times as long, whereas all 0s
are left as they are.

Figure 5-7: Pulse stretcher behavior, 3x

0Input: 1 0

Cycles

0V

+5V

0 0

0Output: 1 0

Cycles

0V

+5V

0 0
Bl inkenl ights 85

While their primary purpose is aesthetic, as I have mentioned, this
also seems to be a good way to solve the problem of light emissions infor-
mation disclosure, by letting the attacker deduce only certain general
properties of the traffic. Thus, at best, the attacker can figure out only
general properties of the traffic, such as when something is being sent
and when it is not.*

What seems to be a good solution, however, is not always. Consider
the following sample data and the corresponding serial line signal:

Assume the signal is processed using a 5x pulse stretcher that makes
every 1 last for five additional cycles. (The original paper suggests a safe limit
of 2x, but we’ll exaggerate to make a point.)

Although it might appear that almost all important information has
been lost when compared with the input signal we want to intercept, it is
possible to recover much of it by making four important observations:

 Obviously, all areas where the stretcher output is zero must have been
zero in the original signal.

 Each stretched run of 1s must have been triggered by 1 at the starting
location in the original stream.

 Each run of L 1s must have originally contained at least one 1 for every N
cycles, where N is the stretch factor for this circuit; otherwise, there
would be gaps in the run. The count of 1s in a block of data represented
under a single stretch of 1s in output is greater than or equal to L/N
rounded up.

 Every run ends after exactly N-1 zeros in the original stream. We know
that these zeros must have been preceded with 1; otherwise the run
would have ended sooner.

* This, technically speaking, is still an attack venue, per the discussion in Chapter 1, yet it is
considerably less effective and practical, for we only get a rough idea of what is going on, not
a copy of the data.

0
Data:

NRZ signal:

1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0

0

Level activated stretcher (5x):

1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 0

Original signal:

Data we can read out of LED after stretching:
86 Chapter 5

By applying this knowledge to the previous example, we can reconstruct
most of the original data, as follows:

In the previous fairly realistic example, fewer than 9 out of 32 bits of data
were lost due to pulse stretching and cannot be conclusively reconstructed
(marked with question marks in the graphic). Thus, we recovered 99.999988%
of the potential search space. We must guess at the remaining data, which
(especially if the data snooped is regular English text, such as email) is rather
trivial to reconstruct compared to the starting point. The authors of the
research suggest that even N = 1.5 or N = 2 “on” time pulse stretching is
sufficient to obfuscate the data, but this is not necessarily so.

The previous reconstruction scheme works with stretches of 0s or 1s.
Some links use return-to-zero (RZ) encodings (such as the Manchester
scheme mentioned earlier), and because the signal is constantly alternating
there, the 2x stretching might indeed be sufficient to obfuscate all data.
However, this is only true if the LED is driven by a signal prior to initial
internal decoding to NRZ—which, in most situations, is not the case. In fact,
applying pulse stretching to RZ-encoded signal is often a silly idea in that the
LED would be on all the time; hence there seems to be no point in doing
that in the first place.

As noted previously, an additional problem stems from the quality of the
pulse stretcher and its susceptibility to interference from other internal
circuits: LED voltage fluctuations that result in slight brightness changes
during a “stretch” period might disclose some information. Capacitor-based
solutions, in particular, can fall into this category.

Thus, some systems, particularly Ethernet devices known to deploy pulse
stretching, can be partly vulnerable to attack, even though the original paper
discussed earlier concluded that there is no direct correlation between the
transmitted data and the behavior of an LED, based on the observation of a
recorded blinking pattern using an oscilloscope.

The optimal solution, particularly with other types of encoding, or when
pulse stretching is not desirable for some other reason (for example, if the
designer wants to avoid making the LED light appear constantly for the time
of a transmission) is to sample the line at a fairly low frequency (for example,
20 Hz) and latch it to a register that holds it until the next sample and that
also controls the LED.

And, now, back to plain English.

0

Stretcher output:

1 ? ? ? ? 1 0 0 0 0 0 1 ? ? ? ? ? 1 0 0 0 0 0 1 1 0 0 0 0 0 0

At least one “1” here
Bl inkenl ights 87

Food for Thought

Other than network device LEDs, plenty of other, equally interesting light
emissions leak scenarios can be found, although the amount of information
disclosed can be significantly lower. For example, consider disk activity LEDs.
Of course, disk communication is not using serial signaling; instead, portions
of data, ranging from bytes to 32-bit words, are sent simultaneously using a
set of signal lines. And, although the LED is usually attached to indicate only
a state of a specific control line, it is still possible to deduce many aspects of
system activity by measuring seek times or the amount of data stored and
read. (Depending on what the LED is actually attached to, it may be possible
to measure either or both.) Although it’s unlikely that this information
would give an attacker any immediate advantage, certain induced I/O
activities can be combined with hard-disk drive LED observation to draw
interesting conclusions, although I am unaware of any research in this area.

Other potential attack venues involve many USB devices and other
proprietary interfaces. As mentioned earlier, USB is a serial bus, and some
USB appliances do have activity indicators.

Various other unusual and arcane information-disclosure venues have also
been proposed, partly researched or at least toyed with. These include measur-
ing the acoustic effects of recharging capacitors as the CPU consumes various
levels of power depending on the executed instruction5 or measuring a black
box device by analyzing its power consumption with the help of statistical
analysis.6 Once again, no truly comprehensive research has been done in the
area of disclosure channels other than classic EMF (electromagnetic field)
emanations—and it appears to be a good idea to investigate. Best of luck. :-)
88 Chapter 5

E C H O E S O F T H E P A S T
Where, on the example of a curious Ethernet flaw, we learn

that it is good to speak precisely

The previous chapter tackled the basics of Ethernet
communications. This seemingly foolproof and
amazingly trivial mechanism appears to be incapable
of causing serious security issues, except for the
possible abuse of the trust relationship caused by the
regular broadcasting of data to all parties on the
network. This is a well-known and well-understood
property of Ethernet networks, for which good
remedies include switches, bridges, and network
segmentation, to name just a few.

Nonetheless, this issue manifests itself in ways wholly unforeseen, due
largely to an unfortunate choice of words, or lack thereof, in the official
implementation requirements for Ethernet drivers. A widespread implemen-
tation problem is the result, and it has reached a scale that has earned it a
place as this chapter. It provides an interesting case study for this class of
nobody-at-fault problems.

Building the Tower of Babel

The Ethernet protocol provides the basic means to distribute bytes over a
piece of wire: a low-level data-encoding scheme, and a data format to contain
a portion of the information. The Ethernet frame contains the information
about the local disposition of the data it carries (that is, who is sending it and
who should be the recipient) and a brief description of the type of infor-
mation encapsulated. Additional methods for error detection are also
provided, and then the entire frame is pushed out to a potential recipient
and all other systems. In terms of functionality, Ethernet is similar to data
portion encapsulation schemes used over different mediums or in different
applications, such as frame relay, Asynchronous Transfer Mode (ATM),
Point-to-Point Protocol (PPP), and so forth.

The question is, “What data should be carried by such an Ethernet
frame?” Computers use hundreds of formats and application protocols and
can run applications ranging from scientific simulations to network games
and chat clients. As such, although it is possible to simply encapsulate the
data for a remote recipient within an Ethernet frame as is, it is usually a bad
idea because the recipient won’t know how to handle it. Is it incoming email?
A web picture? Or perhaps configuration data? You can’t tell. Too, because a
typical computer runs a variety of programs almost simultaneously, the
distinction is even further blurred.

Ethernet poses yet another problem on a larger scale; specifically, how to
reach the other end. Broadcasting data to all parties on a local network is
easy; but what if the other system, the party one of the local users hopes to
reach, is not local? What if it has to be reached over a wide area network
(WAN) and uses a wholly different link-layer protocol? Even if a way can be
found to route traffic to that remote destination, a more fundamental issue
remains: how to address the package.

Ethernet uses its own unique, specialized addressing scheme. It calls
hosts by their theoretically unique hardware card identification numbers
(Media Access Control addresses, or MAC addresses) embedded by the
manufacturer on every Ethernet adapter. These numbers are meaningful
only to Ethernet; they are meaningless to any other type of network and are
nearly impossible to use to track down a piece of hardware if you are not on
the local setup. This raises a trust issue. For example, who bought a card with
the address of 00:0D:56:E3:FB:E4, and where are they now? Can you trust
them to really be the original purchaser and not an impostor?

Low-level host-addressing schemes, such as this one, usually are no help
in relaying data to its destination unless the hardware with a particular MAC
address is attached directly to the sender’s physical network. There is no way
to directly map a physical device identifier to a particular location on the
globe and determine which path should be used to send it information.
90 Chapter 6

The OSI Model

The link-level protocols were designed to support communication between
local nodes or, in some extreme cases, between two fixed endpoints on a
shared link. To make internetworking possible and some more practical uses
of the networks feasible, a hierarchical structure of network protocols called
Open System Interconnection (OSI) was devised.

The OSI model (see Figure 6-1) defines the physical connection level as
the first layer and builds higher-level features on top of it. Link-level protocols
constitute the second layer (data link layer) and are, as expected, defined as
a way to communicate with other local nodes that use the same physical link.
These protocols carry higher-level, link-independent protocol data, defined
as the third layer (network layer) of the model. The Internet Protocol, IP for
short, is the most prominent example of such a protocol.

Figure 6-1: The physical data layout in the OSI model, an example

The third layer is designed to provide information about the general
disposition of the traffic as well as universal identification of both the origin
and final destination of data using network-specific addressing, thus making
it easier to route the packet. Unlike the second-layer protocols, the third
layer is not discarded or modified en route and is devoid of any link-specific
features such as MAC addresses, CSMA/CD (Carrier Sense Multiple Access
with Collision Detection) overhead, and so forth.

The fourth layer provides the means for establishing specific commun-
ication channels between endpoints starting and terminating on a given
machine. This provides a way for simultaneous communication of multiple
types and channels. None of the fourth-level protocols needs to be
understood by intermediate systems to properly deliver the traffic to the
destination. The packets are interpreted only by the final recipient to
determine which application should be receiving the data and how this piece
of information relates to adjacent packets.

Ethernet frame (layer 2)

Internet Protocol packet (layer 3)

TCP/UDP packet (layer 4)

Application protocols (layer 7)
ACTUAL DATA

Et
he

rn
et

 h
ea

de
rs

lo
ca

l o
rig

in
lo

ca
l d

es
tin

at
io

n
ch

ec
ks

um
, s

iz
e

re
m

ot
e

or
ig

in
re

m
ot

e
de

sti
na

tio
n

ch
ec

ks
um

, s
iz

e

co
nt

ex
t i

de
nt

.
ch

ec
ks

um
Echoes of the Past 91

The subsequent layers of the OSI model are perhaps less interesting and
have a tendency to blend together. The fifth level is supposed to provide
reliability features that are often incorporated either in fourth-level
protocols, such as TCP/IP (Transmission Control Protocol/Internet
Protocol), or on the application level. In some cases, they are not even
implemented at all if there is no need to achieve reliable communications.
The sixth level provides “library” functions, such as decompression and
decoding of the data and, as with the fifth level, is usually perceived in terms
of application-level functionality. Finally, the seventh layer is the application
layer, the place where data is transferred in a specific format.

Notice that the higher layers in the OSI model are independent of the
lower layers as they apply to the carried data. When the time is right, the lower
layers can gradually be disposed of without losing the data or the ability to
further process it. The second layer is discarded at every intermediate system;
the third layer can be discarded once the data is delivered to its destination
system. The fourth layer is dropped before delivering the data to the client
application.

The third layer usually remains completely independent of the underlying
link-level protocol by providing complete sender and addressee information,
an integrity protection mechanism (checksumming), and information about
the size of the carried payload. This is precisely what IP does.

One important consequence of this design is that any superfluous
information appended to the packet on layer 2 while in transit will not affect
the way the IP information is interpreted by the addressee.

The Missing Sentence

In the previous chapter’s discussion of the design of the Ethernet, I men-
tioned an interesting requirement that arises out of a need to provide
reliable jam code propagation for the purpose of collision notification: the
minimum size limit for an Ethernet frame.

This requirement was carried over to the official IP-over-Ethernet
encapsulation specifications, such as RFC 1042, “A Standard for the Transit
of Internet Protocol Datagrams Over IEEE 802 Networks,”1 by requiring
frames that were shorter than this minimum length to be padded. The
padding can be carried out at will and has no effect on the carried data on
the IP layer, as the packet length specified in the IP headers does not
change. Thus, the padding will not be interpreted by the recipient as a part
of higher-level OSI model traffic.

There is, however, a slight problem. Although the RFC requires the
padding to be initialized to zero, it does not specify who should provide and
prepare the padding and at what software stage the padding should occur.
The need for the padding to be of a particular value is also a requirement
that in its nature is fairly arbitrary; hence, no attention is paid to it—setting it
any other way would not impact how the protocol works, because the extra-
neous data is simply discarded upon receipt.
92 Chapter 6

To add to the confusion, many network interface cards provide an
autopadding feature if a packet the operating system sent to the hardware is
too short—but, naturally, not to ensure the specific contents of a padding
if frame size has been already taken care of in software. This led to wide-
spread confusion among some developers who chose to obey the size
requirement and extend the size of a packet in software by simply
increasing its declared length. They often did not realize that the data
between the end of the IP packet and the end of the padded frame was
not prepared (initialized to zeros) by the driver, the operating system, or
the hardware.

The problem went largely unnoticed for years, although it caused an
awkward issue that regularly drove some network hackers insane. The pack-
ets they received from local systems often contained some extra garbage at
the end—such as fragments of website contents or even chat conversations
that were clearly irrelevant. They blamed the recipient (faulty equipment,
the network traffic analysis application, libraries) but ultimately gave up
looking for a cause because the issue was of marginal relevance. The issue
never got the attention it deserved.

That is, not until Ofir Arkin and Josh Anderson of @Stake decided to
give it a closer look in 2003. Their paper “EtherLeak—Ethernet Frame
Padding Information Leaks”2 examined the problem in more detail. The
authors realized that a large number of mainstream systems, such as Linux,
NetBSD, Microsoft Windows, and other platforms, fail to initialize the
memory at the end of the newly prepared Ethernet frame after modifying its
length. Some implementations even fail to change the size of a frame prop-
erly or to send a proper number of bytes to the hardware layer.

As a result, the IP packet is padded with data that happens to be stored
in the portion of memory the system used previously for other purposes.
The memory could contain part of a previously sent packet or some other
kernel memory fragment, depending on the design of the driver or the
operating system. This, of course, creates a fascinating information dis-
closure scenario: An attacker sends inconspicuous and legitimate traffic to
the victim and, with some luck, obtains potentially sensitive information. The
amount of information disclosed is typically sufficient to justify concern.

The exposure is limited to a single Ethernet network and, as such, is fairly
localized and noncritical in a typical LAN environment. Still, it definitely
remains a problem of some significance, and even though any local network
is partly vulnerable to snooping, this particular problem suggests some
conclusions that extend beyond the most obvious:

 On systems that use dynamic buffers for outgoing Ethernet frames
(Linux, for example), the padding can expose not only the previous
frame, but other memory contents, such as edited or viewed documents,
URLs, passwords, or other sensitive resources. In this case, a careful
observer might be able to gain access to information they could not other-
wise intercept on the network.
Echoes of the Past 93

 On systems that use static buffers only to prepare Ethernet frames, the
problem can be exploited to defeat systems that protect against traffic
sniffing, such as switches, enabling the attacker to intercept data from a
different connection.

 In certain static buffer designs, information from another segment on a
multihoned machine, with one network interface connected to a general
LAN and the other interface hooked up to a restricted network, can be
exposed, thus relaying portions of presumably secret data to the public
infrastructure.

The authors of the paper extensively reviewed several open-source
implementations and concluded that a variety of approaches and buffer
layouts are commonly used and that there is no predominant buffer
allocation and usage scheme. Their conclusion? A typical diverse network
environment is likely to be affected by all three types of issues at some point.

Food for Thought

The issue discussed here is not unique to Ethernet or network design. These
problems almost always arise when an otherwise detailed implementation
guideline omits or only vaguely discusses a single necessary step, causing
numerous developers to simply overlook the problem while implementing the
standard. Had they been given more vague overall instructions, developers
would probably be forced to think through the problem. Instead, they
implement step-by-step instructions and are far more vulnerable to
committing errors. “Foolproof” instructions that tell how to perform certain
tasks, as opposed to what to achieve, often backfire.

We will return to the problems of protocol leak scenarios, albeit in a
slightly different context, in Part III of this book.
94 Chapter 6

S E C U R E I N S W I T C H E D
N E T W O R K S

Or, why Ethernet LANs cannot be quite fixed,
no matter how hard we try

Ethernet networks do not provide a universal and easy
way to ensure the integrity or confidentiality of the
data they transmit, nor are they engineered to with-
stand malicious, intentionally injected traffic. Ethernet
is merely a means for interfacing a number of local,
presumably trusted systems.

Assuming this level of trust is convenient at the design stage and is
theoretically sufficient for peer systems on the same network and often at
roughly the same physical location. But, as the old saying goes, only in theory
is there no difference between theory and practice. In practice, there is a
difference.

As it turns out, local networks are difficult to fully control and must be
protected from their own users as well as from external threats. Any expand-
ing local network is bound to encounter a rogue user, whether from within
the organization or from outside, exploiting a flaw in one of the systems. The
occurrence of such an exploit is only a matter of time, as almost all network
administrators learn at some point.

Practical network security is the art of detecting incidents, minimizing
exposure, and assessing and understanding the risk on all levels, not only an
exercise in building perimeter defenses. The problem? A bare-bones Ethernet
infrastructure is prone to all types of data interception, hijacking, and imper-
sonation scenarios; once an intruder or a malicious but legitimate user
controls a single system on the network—breaking through a single line of
defense—this person can wreak havoc on the infrastructure and gain access
or take over certain resources and services with minimal effort.

Some Theory

Ethernet switches, a class of smart devices designed to route unicast traffic on
the second OSI layer to the appropriate port instead of broadcasting it to all
nodes (as is the case with hubs or direct connections), may appear to solve
this problem. They are often thought to solve the security problems asso-
ciated with the ability for one system to observe or hijack third-party traffic,
but this is not so. The solution is not that simple, and the confusion caused
by this presumption sometimes causes more harm than the switches could do
good in the first place. But first things first. To understand the exposure, let’s
look at how Ethernet switches really work.

Address Resolution and Switching
All communication within a local network is based on the addressing scheme
discussed in Chapter 5. Unique identifiers assigned by the hardware manu-
facturer to a specific endpoint device are used to address systems and deliver
data frames. However, the Internet and most of today’s private networks are
built around a more flexible and universal suite of protocols and use an
addressing scheme on the third OSI layer, commonly known as Internet
Protocol (IP) addresses. The IP address is first used to direct the traffic across
the world to an appropriate local network using a hierarchy of routing tables
on middle systems all over the globe; not until the packet reaches the
perimeter of the destination network must the final recipient be located the
old-fashioned way, by a hardware address lookup.

Whenever a system on the local network decides to locate another local
party with a specific IP address, it uses a special address resolution protocol
(ARP) to determine the association between a physical card address—the
basis for addressing systems on a local network—and the IP address, a
universal internetworking system identifier.1 The sender distributes an ARP
query to a special broadcast address on the local network. This reserved
address is guaranteed to be received and processed by all systems on the
network, regardless of the actual hardware address assigned to specific
nodes. In this scenario, the system that considers itself to have the right to
use the IP address specified in the query is expected to send a response to
the sender, thus disclosing its hardware address in answer to the query; all
other folks are supposed to silently ignore the broadcast ARP packet. After
this exchange, both parties now know each other’s IP and media access
96 Chapter 7

control (MAC) addresses. They should cache the finding in a special buffer
to eliminate the need to perform additional lookups every time a portion of
data is exchanged and then proceed with the actual communications—but
other than that, they are ready to swap some packets based on IP addressing.
This design is a charming and delightful example of an old-time trust and
courtesy. But what can be done to contain the exposure caused by a mali-
cious bystander on the same network, who pretends to be someone else, and
what can be done to prevent the more curious users or evil foes from
reaching too far? Manufacturers of the Ethernet hardware most certainly did
not help network administrators by making it possible and trivial to change
MAC addresses on most of today’s devices—presumably allowing the user to
reprogram then in order not to end up in trouble should one day a batch of
cards turn out to have duplicate addresses.

Again, switches appear to solve the problem. The basic design concept
behind a smart switching device relies on duplicating the MAC address cache
on the level of an interim network device. A switching device is equipped
with numerous Ethernet ports, each of which connects to a single system (or,
less often, a set of systems). But instead of serving as dumb repeaters, sending
all traffic received on one port to all others (as Ethernet hubs do), switches
attempt to memorize MAC addresses associated with a machine connected to
each port, effectively creating MAC-to-port associations, as opposed to the
MAC-to-IP mappings created by endpoint systems.

The data, stored in content addressable memory* (CAM), determines
where to deliver incoming packets. Whenever a portion of traffic arrives,
the switch attempts to determine which port the addressee is on. If this
information is available, the packet is delivered directly (and only) to this
particular port, keeping the information away from others and improving
network performance.

Virtual Networks and Traffic Management
Some more advanced switch solutions provide additional features intended
to make it easier to manage extensive networks and to lower deployment
times and expenses. These features also appear to help with network security
and may include the following:

Virtual LAN (VLAN)

A general name for a set of methods used to divide a pool of ports on a
physical device into a set of separate logical networks, thus separating
traffic on a group of ports from others and preventing any kind of traffic
from crossing between those groups on the switch level. (This scheme is
most commonly implemented using the IEEE 802.1Q standard, dis-
cussed in the next item in detail.) Implementing a VLAN is like splitting

* As its name suggests, this type of memory can be directly addressed by the parameter for which
you are trying to determine the value, which saves time that would normally have to be spent on
searching for the parameter. A library catalog is a trivial example of CAM—you do not need to
go through all the books in the library just to find one; you determine where to look based on
what you are looking for (a piece of information about the “content”).
Secure in Swi tched Networks 97

a single switch into several fully independent devices, except that the
VLAN solution is far more flexible and cost-effective, because it is possible
to reshape your network and reallocate physical resources at will. VLANs
were met with a warm welcome by network staff everywhere because they
promised to offer a simple yet powerful way to build a set of separate net-
works on a single device or, for example, separate servers from worksta-
tions, without the need to buy a dedicated switch for each group.

Trunking

A natural extension of the baseline VLAN design. Trunks use the IEEE
802.1Q frame-tagging scheme to tunnel multiple VLAN traffic over a sin-
gle link, instead of forcing the user to run separate wire for every VLAN
to be populated to another device, as shown in Figure 7-1. Packets from
all or some VLANs on the source switch are tagged with enough informa-
tion to determine their originating VLAN within the Ethernet frame
header, tunneled to the other endpoint over a traditional link, decoded,
and then pushed out into appropriate VLANs at the destination.
Although this option usually results in lower performance than running a
separate cable for every subnet, it is much more practical. Trunked systems
often also feature DTP (Dynamic Trunking Protocol), a trunk autoconfig-
uration protocol that enables devices to automatically discover and
exchange encapsulated frames other trunk-enabled devices with no spe-
cial administrative actions required.

Figure 7-1: VLAN trunking in action. VLANs propagated across two devices. Devices on all
instances of both VLAN #1 and VLAN #2 can talk with each other, but cross talk between
VLAN #1 and VLAN #2 is not possible.

VLAN #1

802.1Q Trunk

Packets from both VLANs
marked with tags

VLAN #2
Switch Switch

VLAN #1

VLAN #2
98 Chapter 7

Spanning tree protocol (STP)

Lets you build redundant network structures in which switches are inter-
connected in more than one location, in order to maintain fault toler-
ance. Traditionally, such a design could cause broadcast traffic and some
other packets to loop forever while also causing network performance to
deteriorate significantly, because the data received on one interface and
forwarded to another in effect bounces back to the originator (see Fig-
ure 7-2, left).

When designing a network, it is often difficult to avoid accidental
broadcast loops. It is also sometimes desirable to design architectures
with potential loops (in which one switch connects to two or more
switches), because this type of design is much more fault tolerant and a
single device or single link can be taken out without dividing the entire
network into two separate islands.

To make it possible to build loops and other nontrivial architectures
without causing serious performance problems, STP implements an
election mechanism to select a “root” node switch. Based on the result of
this election, a treelike traffic distribution hierarchy is built from this
node down, and links that could cause a reverse propagation of
broadcast traffic are temporarily disabled (see Figure 7-2, right). You can
quickly change this simple self-organizing hierarchy when one of the
nodes drops off and reactivate a link previously deemed unnecessary.

Figure 7-2: Packet storm problem and STP election scheme; left side shows a fault-tolerant
network with no STP, where some packets are bound to loop (almost) forever between
switches; right side is the same network where one of the devices was automatically
elected a master node using STP, and for which the logical topology was adjusted to elimi-
nate loops. When one of the links fails, the network would be reconfigured to ensure
proper operations.

Attacking the Architecture

The mechanisms discussed so far were engineered to improve the bottom line
while providing high performance, on top of a network design that provides
no security features whatsoever.2 Although certain common, well-understood,

Broadcast
packet endless

loop!

Redundant (fault-tolerant)
switch architecture

Redundant architecture
with STP election

Root node Tree structure:
link dropped

from the
chain
Secure in Swi tched Networks 99

and easy-to-prevent attacks, such as MAC spoofing (the ability for any person to
spoof an ARP message and impersonate a device with a particular IP) are
widely recognized as a pitfall of local area networking and are easy to prevent
with properly configured switches, some other serious design flaws are not so
trivial and, in fact, not prevented so easily. It is not always obvious that solutions
commonly perceived as designed to improve security in fact do nothing to
help it.

CAM and Traffic Interception

One of the more spectacular reasons not to consider switches as a security
feature is the CAM overflow scenario. The CAM that stores MAC-to-port
associations has a fixed and limited size and is generally constructed in a
nondiscriminatory manner. Whenever a system cannot be located in CAM, the
switch has but one way to deliver the packet—it must fall back to the hub
mode, broadcasting the packet to all systems, hoping the recipient will
recognize this traffic as addressed to himself and that other systems will be nice
enough to disregard it altogether. Thus, a careful attacker can employ a tactic
to generate a large number of bogus ARP requests and responses, or some
other packets, impersonating a vast number of separate network devices, just
to fill up the switch’s CAM. Once the CAM is full, the attack has effectively
degraded the network security by disabling smart frame routing on the switch
and forcing it to fall back to broadcasting all data. This, in turn, allows the
attacker to snoop on all communications, as if the network was not switched at
all. The attacker can do all this without impersonating the recipient or visibly
affecting the operations of the network, so the victim might well remain
completely unaware of this problem. This is a design issue; it is not a flaw in the
intended purpose of these devices, but a serious misconception in the popular
understanding of how switches work. And, rest assured, it is nearly impossible
to fully address this problem in a typical environment. Some switches do
implement port and time limits to prevent such attacks, but these are never
100 percent effective.

Other Attack Scenarios: DTP, STP, Trunks

Other problems are usually easier to prevent and remain more evident (can
be often detected by the victim), but still illustrate Ethernet-level security
issues. For example, an attack on the aforementioned DTP mechanism is
one interesting possibility. DTP autonegotiation is often enabled for all ports
on a device in order to provide easier setup. The problem is that a clever
attacker can hence pretend to be a trunk-enabled switch, rather than a mere
end-user workstation or a humble server; once recognized by the switch it is
connected to as a friendly device, he would start receiving 802.1Q tagged
frames, including traffic in other virtual LANs served by the switch it is
connected to, being able to intercept or inject malicious traffic to networks
with which he is not supposed to be able to communicate. In many networks
100 Chapter 7

where the same switch handles both protected, “demilitarized” networks and
common corporate LAN infrastructure, such an attack may be yield very
useful data by enabling members of one of the networks to snoop on or
interact with the other.

You can resolve this DTP problem on some devices by changing the
default configuration and clearly defining a set of dedicated trunk-enabled
ports on the switch. However, the problem does not end here—our other
friend, STP, can be abused in a similar manner, allowing an attacker to
choose self as the “root” switch and receive a cut of the network traffic.
Disabling STP discovery might be even more difficult in a typical corporate
environment.

Still another problem arises when any trunk originates or terminates at a
nondedicated VLAN. (That is, the port used for trunking is placed in a
VLAN also used by workstations.) By injecting already tagged frames, it is
possible to inject traffic to a trunk. This is arguably a configuration flaw, and
the problem is often overlooked, since many engineers assume the method
for implementing trunks is far more advanced and magical than it really is.

Prevention of Attacks

These problems are often difficult to solve, particularly in a network that was
not firmly and closely supervised through all phases of its development and
expansion. Although certain high-end devices provide extended security
features to counter potential attack vectors and mitigate or eliminate some of
the risks, Ethernet networks were not designed to provide security, nor were
many of the smart devices created to manage these networks. The attacker
can easily render some or all of their features useless and downgrade the
network security model to the least desirable option.

Although there are methods and rigid practices to follow in order to
secure a local Ethernet network, the complexity of this process and the
additional financial cost and performance impact that doing so often carries,
let alone the number of vectors to be addressed, all make it obvious that the
technology was not engineered with any level of practical security in mind.

Food for Thought

When Ethernet was developed, it seemed reasonable to disregard any
security considerations in the design decisions and to leave the burden of
securing the network to higher-level architecture, encryption, and so on.
Over time, however, this initial decision has begun to contribute to the
overall maintenance costs of Ethernet networks and the difficulty of keeping
them reasonably hack proof without sacrificing functionality in some ways.

The problem is hardly limited to the Ethernet, either. Many networks
designed to be trusted based on physical-access or equipment-access
criteria—including, for example, most of the world’s phone systems—are
inherently and uncontrollably exposed to internal threats with little or no
Secure in Swi tched Networks 101

way to efficiently contain the exposure and control the collateral damage
resulting from a single-system compromise within the grid. As the size of the
network grows, and the number of interchanges increases, the probability of
one of the systems being operated by a malicious user or insufficiently pro-
tected either on physical or remote access steadily approaches 1. Although
traditionally, access to the backbone, rather than access to an end-user
station, would be required to compromise the system—thus making the
situation somewhat different from Ethernet—nowadays, Voice-over-IP
(VoIP) systems quickly make up for this inconvenience, frequently allowing
easy spoofing and other trickery by putting too much trust on the user
endpoint side.
102 Chapter 7

U S V E R S U S T H E M
What else can happen in the local perimeter of “our” network?

Quite a bit!

Local network designs, such as the Token Ring or now
predominant Ethernet, were engineered under the
assumption that there was no need to assure security
on the level (or layer) of the technology used to
transmit the data itself. When computers were first
developed, users sharing a network were expected to
play nice.

Although for this reason alone one might assume that the designers of
Ethernet would have seen no need to incorporate full-fledged security
functionality into their design, they are to be blamed for the unwarranted
optimism and not foreseeing the inevitable. Ethernet simply did not leave
space to easily implement integrity, confidentiality, and sender-verification
mechanisms at higher-order OSI layers, devices, and applications. Subse-
quent protocols and communication schemes attempted to implement
partial privacy and a level of undeniability of communications—but only to
reach a point where we realized it is not possible to implement adequate
security there without going back and reworking the link layer. The only
other possibility we were left with was building computationally expensive

and complex cryptographic hacks on top of the system, of which the sheer
complexity contributes to a number of security problems discovered year
after year.

This unfortunate and later quite intentional trend had effectively
created a set of networking mechanisms that, although they perform well
and are affordable, are not suitable for handling even moderately sensitive
data in the presence of a hostile party (and almost all user-related data flow
on a local network is sensitive). Solutions that try to address these problems—
such as virtual private network (VPN) applications, encrypted encapsulation
for the lucky few of the most popular web protocols, advanced switches, and
so forth—are usually far more expensive and sophisticated than they could
have been had security been a key factor when devising the initial concept
for an Ethernet communications scheme.

Before we arrived there, we lived in partial denial for quite a while.
When security became a real-world concern (with the expansion of the
Internet and a sudden proliferation of system compromises), the first
defenses to appear focused on the external world, while ignoring threats that
could come from within the “trusted” network. But it wasn’t too long before
a couple of corporate and institutional entities learned some painful lessons.
With time, it became obvious that external defenses such as firewalls and
intrusion detection systems alone were not enough, even when properly
configured across the enterprise. The network layer was still vulnerable,
allowing an insider to compromise data exchanges without exploiting the
security vulnerabilities of any single system in the company.

Although you can argue that the network could be secured by deploying
appropriate encryption and cryptographic identity and integrity verification
mechanisms on all interfaces, that is often impractical or impossible, particu-
larly without impacting the performance and reliability of the network and
incurring significant costs (not to mention the issues of compatibility with
various operating systems and applications). Besides, as I have mentioned,
cryptography is not always the answer: not only is it much easier to success-
fully attack when the data can be seen and intercepted (replay or timing
attacks, for example), but certain types of information—such as the Ethernet
frame-padding flaw discussed previously—can thwart all efforts to protect
the user.

In Part II of this book, we are addressing some of the threats inherent in
local networks that expose information without a traditional attack ever
occurring. All these problems will remain with us as long as networks use the
old and tested design that is rather ill-suited for networking today.

We are now ready to move forward, but before we dive into the wild and
fascinating world beyond the local perimeter, let’s glance at some other
interesting (and more specific) exposure scenarios.
104 Chapter 8

Logical Blinkenlights and Their Unusual Application

One such example relates to the abuse of logical indicators—that is,
counters, flags, and other gizmos that have no physical representation but,
rather, are maintained by a computer and made available in software,
commonly implemented in local networks. Logical indicators are a helpful
feature that, once again, assume that the local network is to be trusted.

The Simple Network Management Protocol1 (SNMP) is the most popular
method for monitoring and sometimes administrating network devices. SNMP
is often implemented on endpoint systems (servers and workstations) as well as
network devices, such as switches, routers, and printers.

SNMP provides a means for reading (or modifying) an abstract represen-
tation of many system and application internals, operational and configuration
parameters, and statistics. Using SNMP, you can query a network printer about
the number of network cards it has or its uptime and then use exactly the same
method to query a mainframe for the same information, even though the
information needs to be obtained internally by the device in a wholly different
way on each system. Hence, SNMP makes it easy to monitor and manage
heterogeneous environments without implementing a multitude of native
access protocols and check procedures.

Naturally, SNMP itself has plenty of implementation and deployment
security issues, but that is not my point here. Even when properly imple-
mented, this functionality can lead to a security information disclosure, such
as providing read-only access to the seemingly irrelevant statistics of a net-
work interface. (This hole is eliminated if the protocol is carefully restricted,
but that is often impossible on certain types of network equipment.) A
careful attacker can observe frame or packet counters on a system running
SNMP and use that information to derive profiling information needed for
timing attacks, which can recover interactive session information or other
interesting characteristics, in a manner similar to the approach discussed in
Chapter 1.

Whoops. But really, can this much bad happen because of this?

Show Me Your Typing, and I Will Tell You Who You Are

Although I’ve mentioned this class of problems several times already, and they
may seem abstract, their consequences are real, even when the keystroke
reconstruction vector, on which I focused in Chapter 1, is disregarded. For
example, in a fascinating development, a group of German researchers from
Institut für Bankinnovation have created a commercial product, PSYLock, that
provides typing-pattern-based biometrics2: Using PSYLock they have been able
to uniquely identify (and hence possibly track) users by examining how they
use the keyboard.
Us versus Them 105

PSYLock relies primarily on measurements of interkeystroke timing, a
trick I discussed previously. Given the ability to observe packet counters for a
specific machine and calculate when, in an interactive session, a key is
pressed by the user, you can identify a person regardless of which terminal
they use. Some interesting applications, both malicious and supervisory in
nature, can be suggested based on the application of this concept to the
network layer. If the attacker knows that there is an interactive session of
some remote access protocol between a station for which they can monitor
SNMP switch port statistics, they can, by repeatedly polling the counter,
determine when keys are pressed and, hence, draw conclusions as to what is
being typed or who is typing.

A more lightweight variant of the attack, not requiring any of the
advanced modeling that we had to cope with before, is also feasible. In their
Bugtraq posting titled “Passive Analysis of SSH (Secure Shell) Traffic,”3 Solar
Designer and Dug Song, among other things suggest yet another possible
attack, this time using the SSH protocol, a common method for connecting
to a remote system. Although SSH is encrypted, in versions released prior to
their research it is possible to measure the length of a password by carefully
analyzing the size of an observed packet during login (the password is sent in
a single chunk of data once entered by the user).

This technique could well be successfully applied to other cryptographic
protocols that do not take active measures to hide the length of a password
by padding it before sending. And, no suprise, the attack can be carried out
simply by observing an SNMP byte counter, rather than by directly
monitoring traffic.

The Unexpected Bits: Personal Data All Around

Yet another reason we should not be thrilled by the prospect of a hostile
party peeking at our network (regardless of whether we believe the data they
can see is sensitive) is that plenty of software violates the principle of least
astonishment. The principle of least astonishment is a fundamental rule of
software design that basically says that a program should respond to the user
in ways that surprise them least—in a consistent, intuitive, predictable, or
otherwise expected manner. As it turns out, many programs from several
software publishers send an amazing amount of valuable information, far
beyond what we might expect, often putting users in a situation they did not
bargain for. As always, Microsoft Windows leads the pack of these astonishing
programs and does a great job of releasing information in intentional, but
often overlooked and nonobvious ways, but the friendly software giant is not
alone.

Although few users know it, when Windows is working in a domain and is
configured to use roaming profiles to enable the user to log in from a
different workstation and access their personal data, large portions of the
user’s registry are sent to the domain controller each time they log in or out.
Although the information contained in the profile may seem quite worthless
106 Chapter 8

at first, it includes various personal settings and history information that can
be quite interesting, including last-executed commands, last-visited web
pages, and last-opened documents.

Similarly, and perhaps even more astonishing, if a user’s home directory
within the domain resides on a network drive, Windows looks up all comm-
ands entered by the user in the Run box first on the remote server and then
locally. Thus, the information about all commands issued by the user is
disclosed via the Server Message Block (SMB) protocol to a careful observer.

These and many other examples make it painfully obvious that almost all
network data should be assumed to be sensitive. As such, local networks at
large are not particularly well suited to transport any commonly occurring
data, except for specific, limited, or additionally protected setups. And we
have no good way to protect this information without rolling out heavy
artillery, such as cryptographic IP tunnels or similar software or by redesign-
ing every aspect of networking from scratch.

Wi-Fi Vulnerabilities

It would be unfair to close this chapter and ignore the problems with the
wireless replacement to Ethernet: wi-fi.

Wireless networks based on the IEEE 802.11 protocol are gaining
momentum in the corporate world, as well as among ordinary home users.
Unfortunately, even long before gaining widespread acceptance, and even
though they were designed with the intent to maintain a level of additional
security over wired hookups, wi-fi proved fairly difficult to deploy properly,
perhaps because it attempted to follow in the footsteps of its older brother a
bit too closely.

The 802.11 standard is, in its operating principles, not that much
different from Ethernet. It uses a traditional “one can talk, others listen”
media access control scheme, the only difference being that instead of a pair
of wires, the carrier of the signal is now just a designated radio frequency.
Which brings us to 802.11’s first problem.

In May 2004, the Queensland University of Technology’s Information
Security Research Centre (ISRC) announced its findings that any 802.11
network in any enterprise could be brought to a grinding halt in a matter of
seconds simply by transmitting a signal that inhibits other parties from trying
to talk. Naturally, the same is true for Ethernet, except that you must be able
to connect to a network plug first, which of course makes the attacker much
easier to track and the problem easier to solve. You can simply check the
switch then follow the cable. This attack is not exactly a surprise, but it’s not
what business adopters expected either.

That’s not where the problems end. Where the 802.11 standard
attempted to thwart carrier-level attacks, it actually failed miserably. The
Wired Equivalent Privacy (WEP) mechanism was designed for wi-fi networks
to provide a level of protection against eavesdropping on network sessions by
external parties, thus providing security roughly comparable to traditional
Us versus Them 107

LANs. However, a number of design flaws in the WEP scheme were found in
2001 by researchers from the University of California and Zero Knowledge
Systems, which proved the scheme grossly inappropriate. Regrettably, even
by that time wi-fi had been deployed widely enough to make necessary
modifications difficult to implement.4

To add insult to injury, use of WEP is optional, and most wireless
network devices have WEP turned off; they’re ready to accept and relay any
traffic they receive. Although this is generally acceptable with wired net-
works, where an additional layer of security is provided on the physical level,
wireless networks are open to any random person within range.

Figure 8-1: Tracy Reed’s warflying adventure (courtesy of Tracy Reed of Copilot Consulting
at treed@copilotconsulting.com)
108 Chapter 8

The practice of wardriving—equipping a car with a wi-fi–capable laptop
and going on urban network-finding expeditions—became extremely pop-
ular once it was discovered that a majority of large businesses—particularly in
large shopping malls and commercial districts in every city—have partly or
fully open wireless networks. The abuse is often quite trivial, ranging from
networking for free to sending spam or conducting remote attacks through
the victim’s network, but the risk of a network being penetrated from inside
by a skilled attacker is real.

What is the true scale of the problem? Suffice it to say that at some point
wardriving became passé with the birth of warflying (wardriving, but with a
plane rather than a ground vehicle). In 2002, Tracy Reed of Copilot
Consulting decided to fly around San Diego and vicinity with a wireless
scanner. Cruising at 1,500 feet, he managed to find nearly 400 access points
with default configurations and likely free network access to the Internet or
internal corporate networks for any person nearby (see Figures 8-1 and 8-2).
Only 23 percent of the devices scanned were protected by WEP (which is, in
general, easy to crack anyway) or better mechanisms.

Go figure.

Figure 8-2: Silicon Valley warflying
Us versus Them 109

PART III
O U T I N T H E W I L D

Once you are on the Internet, it gets dirty

F O R E I G N A C C E N T
Passive fingerprinting: subtle differences in how we behave

can help others tell who we are

On the Internet, the network of networks, information
sent to a remote party is beyond the sender’s control
and supervision. Unlike on a local Ethernet, which is
usually a safe harbor for packets until a stranger wan-
ders in, once data is out in the wild it is no longer
possible to estimate and effectively manage threats that
it is likely to face, as no single person can control the
data’s path or determine the intentions of all parties
involved in communications, let alone determine how they approach
security. On such a complex network, the likelihood of a middle party
becoming malicious is neither negligible nor easy to assess. In fact, even the
person with whom you are establishing legitimate communications may have
a hidden agenda or simply be a bit curious.

Unsolicited data acquisition attempts, so to speak, are also different
when carried out over the Internet for a couple other reasons. Most
important, they do not have to be targeted, and they are not limited to a
specific segment of physical infrastructure. Because they require so little
effort on the part of an attacker, they become a viable route for acquiring

potentially interesting data even prior to determining a precise way to profit
or otherwise benefit from this knowledge. Too, the line between good and
bad becomes even more fuzzy: the attacker can be your best friend. The
profitability of general espionage and surveillance for the purposes of
marketing reconnaissance and profiling is too tempting for many to resist;
the world of service provisioning is not black and white, and flexible ethics is
simply a viable business model for many people.

This part of the book focuses on the threats inherent in the open
design of the Internet and on the ability of others to obtain way more
information about you than you might expect—and more than would ever
be needed in order for them to provide you a service such as an interesting
website or an enjoyable network-based game. Once on the Internet, the
enemy is no longer a lone madman sitting across the street, watching LEDs
on the switch through a high-tech telezoom lens. The exposures covered
here make it possible to carry out massive profiling, tracking, information
gathering, industrial espionage, network reconnaissance, and preattack
analysis—and are far more real than the scenarios described previously.

You need to understand the threats in order to maintain an informed
level of privacy protection or perhaps to deploy effective monitoring whether
of your users or of complete strangers, as they approach your systems. Under-
standing is also the key to maintaining sanity in a world where the line between
being concerned about privacy and becoming clinically paranoid is fairly thin.

I’ll begin with an examination of a set of core network protocols used
over the Internet and their privacy implications. Shall we?

The Language of the Internet

The official language of the Internet is called the Internet Protocol, and the
most popular dialect is labeled version 4. The protocol, specified in RFC793,1
provides a way to implement a standardized method for transmitting data
over vast distances and a variety of networks with as little effort as possible.
IP packets constitute the third layer in the OSI model discussed previously
and consist of a header that contains the information necessary to deliver a
portion of data to its ultimate destination—the remote endpoint—and a
payload constructed of higher-layer information that immediately follows the
header data.

The routing information furnished by the sender within the IP packet
prior to sending it out consists of the source and destination address and a
set of parameters that simplifies the process of data transfer or improves its
reliability and performance. When a machine on the local network wants to
communicate with a remote party that is not directly reachable over the
wire—at least not according to the host’s knowledge—it forwards an IP
packet with the ultimate recipient’s destination address, encapsulated in a
lower-layer frame addressed to a local machine that is believed to be a
gateway to and of the network the sender resides at. The gateway machine is
nothing more than a multihomed device—one that has a presence in more
114 Chapter 9

than one network, serving as a connection point between them. The gateway
is expected to know how to route the packet to the outside world, what to do
with the packet, and who should get the data next if there must be more
parties involved before the data reaches the recipient.

Systems involved in routing traffic, from the local gateway through to the
destination network, read the information provided on the IP layer to decide
how to relay the data farther down its path, based on their knowledge of how
to reach certain networks. (In this context, a network is defined as a pool of
network addresses residing at a specific location.)

Naive Routing

In its basic form, a router uses a fixed routing table with which it distinguishes
between a set of local networks (to which it can deliver traffic directly) and the
outside world, which is unknown. Thus, all traffic destined for outside the local
network must be relayed to a higher-order router that presumably has a better
idea of where to deliver the data.

Figure 9-1 shows an example routing structure. The sender (shown at
left) attempts to send a packet to a system whose address belongs to network
C, a network that the sender knows nothing about. To facilitate delivery, the
guy sends the traffic to the local gateway, hoping that it will know where to
look for the recipient. However, this system, router 1, can only reach the
sender’s own network and network A, another network that has nothing to do
with C. Because the target is not on their local network, the router decides it
would be best to just send the packet to a higher-rank WAN router (router 2),
which it happens to be able to reach locally.

Figure 9-1: A naive wide area network routing scheme

This device also has no immediate connection with network C; it can
only directly reach hosts on networks B and D. However, it knows that router
3 is serving the destination address and thus would surely know what to do.

Network A Network B

Network D

Destination on Network A?
If yes, deliver there; if not
forward to next router.

Sender wants to talk to
a system on Network C.
Router 1 is a default
gateway for the sender.

Destination on Network B
or D? If yes, deliver there;
if not forward to next router.

Network C

Router 1

Sender

Router 2 Router 3
Foreign Accent 115

Therefore, the packet is forwarded there, and router 3 can now deliver the
traffic locally to the ultimate recipient, at which point all can rejoice and
celebrate another success.

Routing in the Real World

In practice, networks are often highly redundant and do not have a strictly
linear architecture. They have a complex treelike structure that makes
selecting the optimal and most economical path difficult if we were to use a
static configuration. (Never mind the challenge of staying up-to-date with all
the infrastructure changes as the network grows.)

As such, a more reasonable routing strategy is implemented once the
traffic reaches a backbone router. Run by a network operator, a backbone
router is a dedicated WAN device that binds many networks controlled by a
particular provider into a complex being called an autonomous system. Back-
bone routers are typically equipped with interfaces to other large routers and
use an advanced path-discovery algorithm and a sizable “phone book” of
network blocks and their whereabouts, controlled dynamically by a Border
Gateway Protocol, to find the best way to route the data to the destination
system, without blindly handing out the job of delivering the traffic to some
system in hopes that it will be able to relay it properly.

The Address Space

This process would, of course, be quite impractical if destination networks
consisted simply of a set of addresses arbitrarily assigned to devices around
the world. A definition of an autonomous system would have to list all the
addresses and might easily grow to enormous size. To solve this problem,
continuous blocks of address space are assigned to backbone service
providers instead; providers later lease smaller blocks to end users or lesser
service providers. Routing to the provider’s network is based on a lookup of
the destination IP within the address ranges assigned to this entity and then
within the network based on additional lookup in more detailed routing
tables. An autonomous system can thus be defined as a range of IPv4
addresses (or a set of such ranges), using a netmask method.

The single IPv4 address used to uniquely identify an endpoint system in
all Internet Protocol communications has a fairly simple structure, consisting
of 32 bits, divided for convenience into 4 bytes, a total of 4,294,967,296
possible addresses. The address is traditionally written as four 8-bit values
between 0 and 255, with each value separated by dots. For example,
195.117.3.59 corresponds to a 32-bit integer value of 3279225659.

Continuous IP address blocks are the basis for packet routing. They are
defined on top of IPv4 addressing by defining the part of the IP address that
is fixed and constant for all systems belonging to an autonomous system, as
well as the part of the address that will be set to various values by the owner of
a network in order to give computers unique identifiers.
116 Chapter 9

When defining a network, a set of more significant bits of an IP—theoret-
ically, anywhere from 1 to 31; practically, 8 to 24—is reserved as a network address.
The fixed part of this address is shared by all addresses belonging to (and
presumably routed to) this particular network. The less significant remainder
bits can be set at will to assign addresses to systems within the network.

Historically (per RFC7962), the size of a network or the number of
significant locked bits was a function of the address and could be determined
from the network address itself. Based on the most important bits of each
address alone, addresses were grouped to constitute class A networks (in
which the 8 most significant bits are fixed, yielding more than 16 million
possible user addresses), class B networks (in which 16 bits are fixed, yielding
more than 65,000 hosts), or class C networks (with 24 bits fixed, and 256
possible hosts). Therefore, if your system has an IP address beginning with
the number 1, you can tell that yours is a class A network and that all other
systems with this prefix are next to your box.

Although this seemed handy at the time, the IPv4 address space shrank
significantly once the initial implementers (the U.S. Army, Xerox, IBM, and
other behemoths) were assigned a handful of class A network addresses in
the early days of the Internet, and seemed not to be very keen on giving them
up, despite not using even a fraction of the space they got for public infra-
structure. Too, once the Internet became commercial, and IP addresses
became a resource that users had to pay for, users demanded chunks of
address space that would better fit their requirements; some folks only
wanted four addresses, whereas others wanted a continuous space of 8,000.
Users began to resell or otherwise partition their Internet space.

The result is that the current address space is partitioned in bizarre
ways, often with tiny bits of address space excluded and rerouted from
larger, otherwise continuous blocks, with general disregard for the original
partitioning scheme. Each network address is now accompanied by a net-
mask specification, because it is no longer possible to tell which network a
system is on based merely by the IP itself. The netmask has its bits set at posi-
tions that should be fixed in the network address and zeroed for positions that
can be freely manipulated within a network.

As shown in Figure 9-2, by fixing 24 bits on 195.117.3.0 network, we end up
with 8 trailing bits that can be changed. This allows us to create 256 addresses
between 195.117.3.0 and 195.117.3.255 that belong to this network (albeit
some implementations would force the first and the last address to be reserved
for special purposes, leaving only 254 possible hosts). With such a relatively
simple specification of a network of addresses, it is easy to determine which
addresses belong to this network and thus which should be delivered to a
system that is its gateway (and which should not).

Although this addressing scheme may appear confusing and needlessly
complicated, it is successful: it lets us associate pools of addresses with specific
systems and differentiate between systems with minimum computational
effort. The Internet, in all its complexity, usually succeeds in finding a system
in a really short period of time, without much maintenance.
Foreign Accent 117

Figure 9-2: Network addressing rules

Fingerprints on the Envelope

We know how the data makes it from point A to point B—but what happens
on the way is more interesting than how the path is determined. Let’s then
look more closely at what is being exchanged between the routers and our
endpoint systems. Although you might think that the actual data payload
inside the packets sent over the Internet contains the most interesting
information (considering all the private email and bizarre contents being
exchanged around the world every second), there is more than meets
the eye.

The format of IP packets used for routing the data, and the layer four
information used to encapsulate the actual application-level data, is defined by
the RFCs fairly strictly and with surprisingly little ambiguity. However, even
with a competent TCP stack implementation, the underlying information can
provide considerably and consistently more value to the recipient than the
actual payload data it receives. The disclosure on this level is inadvertent and
unexpected, but to learn more about it we need to take a closer look at the
design of the underlying protocols.

Internet Protocol

First, the foundations. The Internet Protocol provides a universal long-distance
delivery mechanism on the third layer of the OSI model. It contains a set of
parameters that were meant to be interpreted and eventually modified by
intermediate systems. The header is shown in Figure 9-3.

Netmask: 255.255.255.0 11111111 11111111 11111111 00000000
Network: 195.117.253.0 11000011 01110101 00000011 00000000

 195.117.253.59 11000011 01110101 00000011 00111011

 195.117.254.59 11000011 01110101 00000100 00111011

In a valid host address, this fixed section of the
address matches the network address.

Valid host address within the network:

Invalid host address (not on the same network):

In an invalid host address, some of the fixed bits do
not match the network address!

In order to be classified as belonging to a particular
network, addresses must have all bits indicated by
the netmask identical with a “prototype” address of
the network (here 195.117.3.0).
118 Chapter 9

Figure 9-3: The IP header structure

Protocol Version

This is a four-bit value that is fixed to 4 (0100) in all IPv4 packets. IPv4 is the
standard (and, in many cases, the only supported) layer three protocol over
the Internet. Attempts to move toward a more advanced implementation,
IPv6, have not been particularly successful so far—the author is willing to
speculate this is perhaps because the new, extended IP address format is
much more difficult for a typical system administrator to memorize.

The Header Length Field

This is a four-bit value that specifies the total length of the IP header itself,
expressed as a count of 4-byte blocks (making it possible to express lengths
from 0 to 60 bytes using the 16 values of field). This parameter tells the
implementation where to stop parsing the IP header (which may have a
variable length due to extra “options” that can be appended at the end of

80 4 12 20 3228

Header checksum

Options

Data

Total length (TL)Type of Service (TOS)Internet header
length (IHL)Version

40

Precedence

D
elay

Throughput

Reliability

0 3

Reserved

D
on’t

fragm
ents (D

F)

M
ore

fragm
ents (M

F)

8

Reserved

Flags Fragment offset

Destination address

Source address

Identification

ProtocolTime to live (TTL)

Padding

16 24
Foreign Accent 119

the header and immediately before any higher layer contents). It also makes
it possible to skip some of the IP header without having to look at the options
or understand them completely, and go directly to the data.

Because IP options aren’t commonly used for anything other than
diagnostics (they do things like make it possible to force a particular packet
route and not much more), almost all IP packets seen in the wild are 20 bytes
long (meaning this field is set to 5), which is the length of the fixed part of
the header. Values less than 20 are, naturally, erroneous, and such a packet is
not honored by a sane implementation. (Sanity, however, is not a rule of
thumb.)

The Type of Service Field (Eight Bits)

The significance of this field is usually fairly marginal. It provides an honor-
based routing priority description in which the sender is trusted to act in good
faith and allowed to specify whether this traffic is of particular importance or
otherwise requires special treatment. This value is sometimes used in local
installations, where this level of trust can be exercised, but it is often ignored
over the open Internet.

This field consists of three segments:

 The first three bits specify the priority.

 The next four denote the desired routing method (using abstract con-
cepts such as “high reliability” or “low latency” and letting the router
interpret this).

 The last part, a single bit, is reserved and shall be set to 0 (yeah, right).

The Total Packet Length (16 Bits)

This 2-byte field specifies the total length of this IP packet, including its
payload. Although the highest possible value is 65,535, the maximum size of
a packet is often limited to a much smaller value by the restraints of the
lower-level protocol. For example, Ethernet has a maximum transmission
unit (MTU) of 1,500 bytes; as such, a system connected to Ethernet will not
send packets larger than this limit. MTUs greater than approximately 16 to
18 kilobytes are practically unheard of; values between 576 and 1,500 bytes
are the most common.

NOTE Fun fact: The size limit of an IP packet, N bytes (resulting of the MTU parameter), also
imposes the minimum bandwidth overhead limit for any IP traffic: there will always be
at least 20 bytes of header added per N-20 bytes to be sent on a higher level.

The Source Address

This 32-bit value—an IP address in the format discussed in the previous
section—should represent the originating endpoint of the communications.
Because the IP packet is prepared by the sender, and there is very little
120 Chapter 9

incentive for anyone to check the correctness of this parameter at the
perimeter of the originating network, this value alone cannot really be
trusted. It does provide a good hint as to who to talk back to, though—
and if we have a reason to trust this hint, we can use it to talk back to the
sender. The act of forging this value intentionally is commonly referred to
as IP spoofing.

The Destination Address

This 32-bit value specifies the ultimate destination of the traffic. Like all
other IP parameters, it is chosen at the sender’s discretion and used by
intermediate systems to direct the packet appropriately.

The Fourth Layer Protocol Identifier

This is an eight-bit value that specifies what is carried as a payload of the IP
packet—TCP, UDP, ICMP, or more exotic options we will talk about in more
detail in a moment.

Time to Live (TTL)

TTL is an eight-bit “kill counter” for IP traffic. To avoid endless loops when
something goes horribly awry with routing tables, the counter is decreased by
one every time it passes an interim system, or stays in the transmit queue for
a period of time. When the counter reaches zero, the packet is discarded,
and the sender may be mercifully notified via an ICMP packet. The TTL
value, like all others, is chosen at the sender’s discretion, but, by virtue of its
bit width, cannot be more than 255.

An interesting side effect of the TTL counter is that it can be used to
map the route to a remote system: A message with a TTL of 1 expires on
the first router it encounters on its way to the specified destination (and
the sender receives an ICMP message from the router); a message with
TTL set to 2 expires on the next hop, and so on. By sending packets with
gradually increasing TTLs and monitoring the origin of ICMP “time-to-live
exceeded” responses, it is possible to map the set of routers and other
IP-enabled devices en route to the destination. The technique is called
traceroute and is a common method for diagnosing routing problems and
performing preattack analysis.

The usefulness to the attacker lies in the fact that some effects can be
achieved without actually compromising the intended victim: to compro-
mise www.microsoft.com you might instead target the router of the network
that hosts this server, or routers of their ISPs, hoping to intercept all its
traffic and return forged responses. This would effectively cut off the actual
server and, by impersonating it, make it appear to the outside world as if
the site at www.microsoft.com had been changed. Naturally, this is just an
example.
Foreign Accent 121

Flags and Offset Parameters

These 16-bit values control an interesting—and perhaps most flawed—aspect
of IP packet routing. These parameters are used whenever a large packet
must be forwarded by an intermediate system over a link with an MTU lower
than the size of the packet. In such a case, the packet does not “fit” into the
medium as is.

As an arbitrary example, a sender connected to Ethernet can send a
packet up to 1,500 bytes in size and often will do so. However, if the first
router the packet hits bridges the local LAN with a DSL modem, a problem
arises: A common MTU for a DSL link (itself usually a bizarre combination
of encapsulations over other protocols) is 1,492. As such, a 1,500-byte packet
will simply not fit.

Given the large variety of links that make the Internet work, this is a
serious problem. It is dealt with by splitting (fragmenting) the IP packet or, more
precisely, its payload into several separate IP packets and adding information
that makes it possible for the recipient to reassemble the payload before
passing it to higher layers. The result is a new set of packets that fit over this
particular link. An offset specified on each fragment indicates how each part of
the payload should be inserted when the ultimate recipient attempts to
reassemble the original packet.

All fragments but the last also have a special more fragments (MF) flag
set in their headers. When the destination system receives a packet with an
MF flag, or a packet with chunk offset set but no MF flag (which indicates the
last chunk of a split packet), the destination system knows to allocate a
scratch memory area to facilitate the reassembly of the original packet and to
wait for all other remaining chunks before processing the packet any further.

Figure 9-4 shows the process of fragmentation and reassembly, in which
an oversized packet is first split into two chunks and then completely
reassembled by the recipient, despite chunks arriving out of order.

Although this process works, it is somewhat inefficient. It takes time for the
systems to fragment and reassemble the traffic, and the trailing chunks often
carry little payload—only the few bytes that do not fit over a different type of a
link. It is better, of course, for the sender to be able to determine the lowest
MTU between their location and the destination (also called path MTU, or
PMTU for short) and construct their packets accordingly. Unfortunately, IP
does not offer a flexible and clean way to implement this, but this has not
stopped researchers from coming up with a clever hack.

According to this hack, a system that implements PMTU discovery sets a
special flag, DF (don’t fragment), on all outgoing traffic. If a router cannot
forward a DF packet without fragmenting it, it should drop it instead and
send an appropriate ICMP message that reads “fragmentation required, but
DF set.” The sender, upon receipt of such a message, can adjust their expec-
tations accordingly, cache the finding, and continue with more appropriate
packet sizes.
122 Chapter 9

Figure 9-4: The packet fragmentation and reassembly process

NOTE This practice, specified in RFC1191,3 assumes that the single expense of resending
the dropped packet is better than the constant performance loss caused by the need for
fragmentation. The technique, however, is also quite controversial, because not all
devices send proper ICMP notifications and, historically, there was no such require-
ment. Hence, enabling PMTUD (PMTU discovery) can result in a sender being
unable to talk to some sites or in stalled file transfers that are extremely difficult to
diagnose.

Identification Number

The identification number (ID) is a 16-bit value that differentiates IP packets
when fragmentation occurs. Without IP IDs, if two packets are fragmented at
once, reassembly would severely mangle, interchange, or otherwise damage
fragments of two packets that were fragmented simultaneously.

IP header

ID #1234 MTU unit

P A Y L O A D

Relay with fragmentation

Received
packet

IP header

ID #1234

P A Y IP header

ID #1234
MF Nonzero offset

L O A D

Fragment 1 Fragment 2

Relay with assembly

IP header

Arrives as #2

P A Y

ID #1234 reassembly
buffer

Reassembly complete: chunk with nonzero offset but no MF
received, no more holes in the reassembly buffer.

P A Y L O A D

IP header

Arrives as #1

Layer 4 processing

L O A D
Foreign Accent 123

IP IDs uniquely identify several reassembly buffers for different packets.
The value used for this purpose is often chosen simply by incrementing a
counter with every packet sent; the first packet sent by a system has an IP ID
of 0, the second an Internet Protocol of ID 1, and so on.

NOTE On systems with PMTUD enabled, unique IPIDs are not needed, because in theory
fragmentation does not occur, and the value is often set to 0 (although, arguably, not
particularly wisely, because some fairly popular devices tend to ignore the DF flag).

Checksum

The checksum is a 16-bit number that provides a trivial error detection
method. The checksum must be recomputed on every hop (because param-
eters such as TTL change) and is thus designed to use a fast algorithm, which
is not particularly reliable. Although in today’s world, “checksum” is a sum
only by name (using algorithms such as CRC32 or cryptographically safe
shortcut functions), the IP checksum is in fact a sum, or a variant thereof,
with a couple of bitwise negations* thrown in to confuse opponents (and, on
a more serious note, to make it less likely for checksum to remain correct
when common transmission errors occur).

Beyond Internet Protocol

One consequence of many of the design decisions made when devising IPv4
is the lack of a reasonable reliability guarantee, even if the network itself is
behaving reliably. Although IP ID numbers are intended to minimize the risk
of reassembly collisions, their relatively small 16-bit size (which allows for
65,536 possible values) permits problems to arise occasionally when two
packets with identical IP IDs are reassembled at the same time. Also, IP
header checksums are simply insufficient to provide reliable integrity
protection; although unlikely, a random change in a packet could still give
an identical checksum. Too, if the network actually failed, there is no way to
find out what data has gone missing, even if the failure is due to something as
straightforward as a brief overload of a single network component.

Finally, the Internet Protocol does not provide any way to verify the
sender of a message, simply trusting that the real sender is the one listed in
the IP header. It is left to higher-level protocols to provide some of the
integrity and reliability assurance functionality as necessary—and more often
than not, this is necessary. As such, higher-level protocols on top of IP are
needed.

TCP, and to a lesser extent, UDP, not only provide much-needed
protection for traffic, but also enable the user to specify the recipient (or
sender) on a level beyond pointing at a certain system.

* Technically speaking, although it bears no particular importance for the discussion, IP check-
sum is based on 16-bit 1’s complement of a sum of 1’s complements of the checksummed data.
124 Chapter 9

Whereas the IP header simply contains enough information to route
traffic between two systems, and not enough to decide to which application
the information should be delivered, UDP and TCP take things a step
further: they move in the realm of the endpoint system, telling the recipient
to which application they should direct incoming data.

User Datagram Protocol

As defined in RFC768,4 UDP provides a minimal superset of IP functionality.
UDP adds a mechanism for the local delivery of data, but keeps close to the
level of unreliability of the underlying layer (as well as its low overhead). The
use of UDP for communications can be likened to a phone service in which
words sometimes get swapped or are dropped out of sentences, and there is
no reliable caller ID—but the cost of a call is low, and your calls are answered
quickly.

The UDP header (Figure 9-5) has a minimal set of features and is relatively
simple. It introduces a small set of parameters that can be interpreted by the
destination system and used to route a packet to a specific application or to
verify that packet payload was not mangled down the road.

Figure 9-5: The UDP header structure

UDP is used for single queries, in other situations in which maintaining
state information is unnecessary, and when performance and low overhead
are more important than reliability. For example, UDP is commonly used for
domain name system (DNS) name resolution, trivial network boot and
autoconfiguration protocols (BOOTP), streaming media technologies,
network file system sharing, and so on.

Introduction to Port Addressing
UDP introduces the notion of source and destination ports in addition to
source and destination addresses, a concept that it shares with TCP (a more
advanced layer four protocol that I will cover next). A port is a certain 16-bit
number, either chosen by an endpoint application willing to send or receive
data or assigned to it by the operating system (called an ephemeral port).

A port serves as a means to route data to a specific application or service
on a multitasking system so that simultaneous communications can occur
between programs. For example, a name server process can decide to listen

80 4 1612 2420 3228

ChecksumLength

Data

Destination portSource port
Foreign Accent 125

on port 53 for incoming queries, whereas a system logger facility can listen to
traffic addressed to port 514. Ports make it possible for clients to talk to these
processes at the same time. Too, when the implementation supports a
proper separation of source and destination port pairs, it is possible for two
clients using different ephemeral source ports to talk to the same service
(say, port 514) at once, without causing major confusion as to which client
application should get which response from the remote service.

In order for the destination system to differentiate between commun-
ications addressed to a particular application and deliver them as expected,
the sender must specify the destination port number in all their traffic. The
sender specifies a different source port for every client application so that
once the server replies, the answer is delivered to the correct component.

In this port addressing scheme, a quadruplet of values—source host,
source port, destination host, and destination port—is used to ensure proper
traffic separation and session management for simultaneous connections
originating or terminating at a specific system. The design means that as
many as 65,535* clients from a single IP address can connect to the outside
world and that no more than 65,535 services can listen on a single IP address
at any one time; that is, without some clever hacks. (We are not likely to
suffer terrible consequences of this limitation any time soon.)

UDP Header Summary

The UDP header shown in Figure 9-5 earlier follows the IP header and
precedes the actual user-space data in UDP packets. It consists of few fields:
source and destination ports (16 bits each), packet length, and a 16-bit
checksum for the purpose of additional integrity verification.

And now, for something completely different, it’s . . .

Transmission Control Protocol Packets

TCP (RFC7935), the header of which is shown in Figure 9-6, aims to
provide a reliable, stream-based method for establishing a meaningful
conversation between two systems. TCP is more suitable than UDP for use
with all applications except those that must exchange more than simple,
short messages and single shouts.

Although technically implemented using separate IP datagrams traversing
the network, the established TCP connection—a virtual channel, from an
application’s perspective—allows for a communications mode much like a
regular phone conversation. Unlike with UDP traffic, when using TCP you can
be sure that the recipient always receives the data as sent (or that, if error
recovery is not possible, the conversation is dropped entirely). Under normal
conditions, you can also be sure of the caller’s identity, but this convenience
comes at a higher price and with lower performance.

* Technically, that’s 65,536; port number 0 should not be used, however. The operating system
and its applications may allow this, naturally, and be in violation of the standard.
126 Chapter 9

Figure 9-6: The TCP header structure

In TCP, two endpoints first initiate a connection using a so-called three-
way handshake algorithm. Using special, as a general rule, empty packets
(ones with only headers and no actual data payload), the parties agree on the
intent, confirm each other’s identity, and agree on initial sequence and
acknowledgment numbers. These numbers (a set of 32-bit values) ensure
reliable and seamless transmission because they are increased as the data is
sent. This, in turn, allows the recipient to queue incoming packets in the
correct order and to determine whether any portion of the data is missing.

Control Flags: The TCP Handshake

A TCP session begins when a remote system expresses a desire to connect to
a specific port on a destination machine. The remote system sends the des-
tination an empty packet with a SYN flag (meaning a designated bit is set in
the header) and an initial sequence number set in the headers. Following

80 4 12 20 3228

Data

Data offset Reserved Control bits

30

Reset bit
(RST)

Synchronize
bit (SYN

)

Finish bit
(FIN

)

U
rgent bit
(U

RG
)

A
cknow

-
ledgem

ent
bit (A

C
K)

Push bit
(PSH

)

6

Sequence number

Acknowledgement number

Source port Destination port

Window

Checksum Urgent pointer

Option-data #1Option-length #1Option-kind #1

Option-length #1 Option-length #1Option-kind #1

Padding

16 24
Foreign Accent 127

receipt of this packet, any response to a packet must quote the sequence
number in order to be honored. If the destination machine does not send
the correct response in a reasonable time frame, the packet is sent again,
until either the delivery succeeds or the sender concludes that enough time
has passed and drops the connection.

The sequence number ensures that the response to the packet is from
the actual recipient, not from an outsider who knows that a communication
will be occurring and who intends to capture it. The sequence number also
ensures that the response is not a lost, misguided packet from a previous
session that finally made its way home, but a response to this particular
request from the sender. (With 32-bit numbers and 4,294,967,296 possible
values, the likelihood of a collision is considerably less than with 16 bits used
in IP IDs, making both an accidental mishap and a successful guess by an
outsider quite unlikely.)

The recipient is expected to respond to a SYN request with a similar
packet addressed to the sender and source port they used. This packet
should have an RST flag set (again, another bit in the headers) to indicate
that they are not willing to establish a session. (No program is ready to
answer connections on this endpoint.) This packet must also quote the
original sequence number along with the response. Alternatively, in the
unusual case that the recipient is actually willing to establish a connection
and chat with the stranger, they should reply with a similarly constructed
response, but with both SYN and ACK flags set, indicating acceptance of the
request. They should also include the sequence number they expect from
now on in all responses pertaining to this session.

As the last part of the handshake, the sender exchanges a single ACK
packet just to make sure that both parties know each other’s sequence and
acknowledgment numbers exchanged earlier, and that they are on the same
page in regard to the transaction. Assuming that their communication has
reached this point, both endpoints can assume, with reasonable certainty, that
both sender and receiver are who they claim to be. Why? Because each can
observe the traffic addressed to their address. Otherwise, if one endpoint were
just spoofing its IP address to establish a bogus connection in the name of
somebody else, it would have no idea what number to include in its response
to the other party. (And the other party would be quite surprised to find
someone attempting to send them unsolicited SYN+ACK or ACK packets.)

This handshake protocol eliminates the chance of an outsider simply
spoofing the traffic, but does not eliminate the possibility of a hostile privi-
leged party on a legitimate path between the systems (though such an inci-
dent is unlikely, compared with the blind spoofing scenario).

NOTE Needless to say, although the problem of using initial sequence numbers that are diffi-
cult to predict was not considered a problem, and many systems used designs such as a
simple incremental generator, the possibility of either blindly establishing a session by
128 Chapter 9

spoofing a TCP handshake from a particular source or injecting data into already
established connections by an outsider has become a bit problematic with time.* Careful
selection of TCP initial sequence numbers so that a bystander cannot predict what your
system is going to reply with in response to a forthcoming packet is now considered a
necessity, and several approaches have been devised to address this issue.6

Once a handshake is completed, the parties can exchange data, mutually
acknowledging their sequence numbers each time; packets on which a
mismatch of sequence numbers larger than an allowed “window” occurs are
simply ignored. These numbers are from now on also steadily increased to
reflect the amount of data sent up to that point, which makes it possible to
process packets in the correct order at the destination, even if they arrive out
of order. To ensure reliability, if a portion of data is not acknowledged within
a reasonable time frame, a retransmission of the packet (or packets) must
occur.

The termination of a session occurs when a FIN packet with a proper
acknowledgment number is received by any of the parties. If, at any point,
one of the systems gets quite agitated and wants to abruptly terminate the
session (perhaps because, from their perspective, there is nothing to talk
about, the session timed out, or their party severely violated the convention),
an RST packet is sent.

A successful legitimate TCP handshake is shown in Figure 9-7 (on the
left). A failure of a typical IP spoofing attack intended to create a session in
the name of an innocent bystander who does not intend to exchange any
data with the target is shown on the right. The attacker cannot see or predict
the response sent to the system it tries to act on behalf of and thus cannot
complete the handshake, let alone perform any actual data exchange within
the TCP session.

As suggested, TCP provides reasonable protection against network
reliability problems and is more suitable for ordered session-based
communications. But the price is extra overhead that comes from the
need to complete a handshake, as well as for both endpoints to maintain
control information for the connection. Maintenance of this state exacts
a heavy toll because it becomes necessary for every connection to track
sequence numbers and current status of the stream (handshake stages,
data exchange stage, closing stages), keep a copy of all sent but not yet
acknowledged data in case it needs to be re-sent, and so on.

Because of their memory and performance costs, TCP stack implemen-
tations are a common denial-of-service attack vector.

* Kevin Mitnick, one of the most famous and controversial black hat hackers, compromised
Tsutomu Shimomura’s computer by impersonating one of their trusted workstations using TCP
spoofing—an act that quite upset Mr. Tsutomu and, according to most accounts, did not really
help Kevin in the long run.
Foreign Accent 129

Figure 9-7: A complete TCP handshake and a failure of a common spoofing attempt

Other TCP Header Parameters

Other TCP header parameters also control important aspects of packet
interpretation and delivery. These will come in handy later when we attempt
to gain information about the sender by just looking at the packet data they
provide. Figure 9-6, shown earlier in this chapter, provides a complete listing
of the TCP fields.

Source and destination ports

These 16-bit values identify the logical origin and endpoint on source
and destination machines. They are similar to the source and destination
port parameters used in UDP, although the UDP and TCP port space is
kept separate on the system level—meaning one application can listen
on UDP port 1234, and another application can listen on the same port
number in the TCP space. The traffic is directed according to the proto-
col specification in the IP headers.

Client Server

Sends SYN packet
with unique sequence

number

Sends SYN+ACK packet
with unique sequence

number and echoes back
other party’s number of

choice

Client Server

Client Server

Sends ACK packet
echoing the server’s
sequence number

Client Server

Both exchange normal
ACK packets with data

payloads; increase
respective sequence
numbers to reflect the

amount of data
transferred, retransmitting

as necessary

Client Server

Either side sends FIN
packet to terminate

the session

Client

Attacker

Server

Attacker impersonates
client’s IP address to
frame him or exploit

server’s trust

Server responds to client’s
IP address; the attacker
cannot see the sequence
number chosen by the
server, and thus cannot

spoof a valid ACK
packet

A trivial spoofing scenarioLegitimate handshake

Client

Attacker

Server

???
130 Chapter 9

Sequence and acknowledgment numbers

These 32-bit values ensure session integrity. A sequence number is the
value the sender expects to have echoed back. An acknowledgment
number is the value echoed back to the sender and will only be meaning-
ful if the ACK flag is set.

Data offset (not to be confused with IP fragment offset parameter)

The information in this field indicates where in the packet the header
ends and the payload starts. As with IP headers, the length of the TCP
header can vary if certain variable-length settings were appended at its
end. This information makes it easy to just skip to the actual data, with-
out having to go through all the header information.

Flags

These eight-bit values define special properties of a packet. Each of the
designated bits of this field represents a unique flag and can be turned
on or off independently; as such, TCP flags can be recombined arbi-
trarily. Primary flags (SYN, ACK, RST, and FIN) define the way the packet
should be interpreted in terms of a TCP session, as discussed earlier;
secondary flags control certain aspects of payload delivery and other
extended features, such as congestion notification, but are not used to
change the state of a connection itself.

NOTE Although flags can be combined as you please, many possible combinations are simply
illegal or bogus. (For example, SYN+RST has no meaning and is, formally speaking,
not allowed.) Only some combinations are meaningful for the handshake and normal
data processing. Various systems respond in different ways to illegal flag combinations,
and so sending bogus packets with unusual flags is a popular active operating system
detection mechanism.

Window size

This 16-bit value controls the maximum amount of data that can be sent
without waiting for an acknowledgment packet. A higher value allows
more data to be sent at once, without having to wait for an acknowledg-
ment receipt, but can penalize performance if a portion of the data is
lost in transfer or is not acknowledged and has to be re-sent.

Checksum

This trivial 16-bit method protects the integrity of the layer four data,
similar to the packet checksumming mechanism used in UDP and IP
headers.

Urgent pointer

This field is interpreted only by the recipient when one of the secondary
flags, URG, is set in a packet. If URG is not set, the value specified in this
region of the header is simply disregarded. This flag indicates that the
sender is asking the recipient to relay a certain message to the application
processing the traffic, presumably due to an “urgent” situation, so that the
Foreign Accent 131

packet is inserted in the logical stream at a position earlier than it would
otherwise belong to; the exact offset is controlled by the urgent pointer
value. This mechanism is seldom used in normal communications.

TCP Options

The variable-length options block at the end of the header can specify
additional settings or parameters for the packet. In some cases, it will be
empty (zero length), but it is more commonly used to implement additional
extensions for the protocol that were designed later on, without disrupting
old implementations that cannot understand them. The options block is
designed so that systems that do not recognize a specific option can safely
ignore it. The most popular options include the following.

Maximum Segment Size (MSS)

This 16-bit value equals the maximum transfer unit on the sender’s
network, minus the size of lower-layer headers. It represents the maxi-
mum packet length that can be sent back to the recipient without
causing fragmentation en route. The sender uses the MSS setting to
ensure optimal performance whenever the recipient returns large por-
tions of data that would otherwise require fragmentation and associated
bandwidth overhead. Unfortunately, the MSS option is set by the end-
point system according to its best knowledge of the size of the packets
their immediate network neighborhood can handle; it does nothing to
avoid a common problem of midway fragmentation that occurs on inter-
mediate systems (and hence the need to implement PMTU discovery on
IP level, as discussed previously).

Window scaling

This eight-bit value described in RFC12327 extends the range of the win-
dow size field originally specified in the TCP header. With experience we
have seen that acknowledging every 64 kilobytes of data (the maximum
value expressed by the 16-bit window size parameter) can create a perfor-
mance bottleneck when transferring large amounts of data, such as
multimedia files, over high-bandwidth but high-latency links. Window
scaling is a method to extend window size to allow more data to be sent
without waiting for an acknowledgment. This speeds up data transfer but
can also require more data to be retransmitted when a single packet is
missing.

Selective acknowledgment options (RFC20188)

When using larger window sizes, losing a single packet requires retrans-
mitting the entire group of data not yet acknowledged, a terrible waste of
bandwidth. To prevent this, a mechanism for selective acknowledgment
of chunks of data was devised. Endpoints first declare their ability and
willingness to implement this functionality by specifying a Selective ACK
Permitted option and then, eventually, acknowledge noncontinuous
132 Chapter 9

blocks of data using the actual Selective Acknowledgment option in the
headers. Implementing this technique can significantly boost perfor-
mance, but at the cost of certain memory and data processing overhead.

The time-stamp option (two 32-bit values)

This is another high-performance extension suggested in RFC1232. This
mechanism for sending and echoing back time stamps (which are typically
chosen to correspond to system time or uptime in one way or another)
provides a method for each endpoint to estimate round-trip times for the
traffic. The main advantage of this option is that the sender can measure
the typical time a packet needs to reach its destination and proceed with a
TCP retransmission sooner if there is no response. An additional applica-
tion of the time-stamp option is preventing sequence number collisions
(PAWS, Protection Against Wrapped Sequence [Numbers]), for example,
when a long-gone packet makes its way to the destination after several
gigabytes of data have been exchanged and after the sequence number
counter has wrapped around.

EOL

This option should be interpreted as the end of options; it tells the recip-
ient not to process any trailing data as a part of the header. Because the
TCP header size is defined in units longer than a single byte, some
unused space can remain after placing all relevant options before the
beginning of the data, but before the payload data begins (which is only
possible on a full four-byte boundary). The EOL option can be used to
prevent the recipient from attempting to analyze this data.

The NOP option

This option means “do nothing,” and is quite simply ignored by the recipi-
ent. The sender may and should use NOPs in a packet to pad it to ensure
proper alignment of some multibyte options (which must be aligned due
to performance and architecture constraints on some processors*).

T/TCP (Transactional TCP)

This esoteric extension provides support for separate virtual sessions
(transactions) within an established TCP session. This makes it possible
to avoid the overhead caused by the need to complete a handshake every
time you want to perform a specific operation with one-shot services—
an approach that is more common if an application wants to process a
number of separate transactions with a server. This extension is rarely
used, and it is most useful for certain database systems (see RFC16449).

* “Must” as in “are required to be in order to ensure proper handling.” Some processors have
significant performance penalties when accessing multibyte data structures that are not
aligned to 32 or 64 bits; others simply require them to be aligned this way or else cause a fatal
exception (execution trap) and refuse to perform an operation. Naturally, a naughty sender
can purposefully place misaligned data in the buffer and hope that recipient’s system will go
down in flames upon receiving such a packet. Of course, a sane operating system checks for
this first or attempts to copy the option data to a properly aligned region before processing it.
The sanity of a system need not to be taken for granted, though.
Foreign Accent 133

Internet Control Message Protocol Packets

ICMP packets (see RFC79210) are used to send diagnostic information and
notifications for other protocol types. Logically considered part of layer three,
ICMP packets are carried as a payload of IP packets and, as such, are no
different from the layer four payload. ICMP does not carry any new user-space
data between endpoints and provides a trivial signaling method for IP instead.
Figure 9-8 shows the ICMP header structure.

Figure 9-8: The ICMP header structure

A variety of messages are sent using ICMP in response to TCP or UDP
traffic, usually indicating that a particular packet cannot be delivered,
expired in transfer, or was rejected for some reason. Several types of ICMP
can be sent spontaneously, such as router advertisements, echo requests
(ping), and so on.

As with UDP packets, the ICMP header is simple. It consists of the
following fields.

Message type

This eight-bit field lists a general category of the event that caused this
packet to be sent (such as “destination unreachable”). This field can also
carry a stand-alone message, though that use is infrequent.

Message code
This eight-bit value describes the exact problem, if applicable. It depends
on the message type and might describe the condition in more detail
(“network unreachable,” “host unreachable,” “port unreachable,” “com-
munication administratively prohibited”). The distinction between the
level of detail that should be included in the message type field versus
what should be left to the message code is unclear.

A checksum of the packet

This field verifies that the packet was not damaged (as with UDP and TCP).

The header of an ICMP packet is fairly simple and itself does not provide
enough information to successfully troubleshoot the issue it attempts to
report on or to identify what kind of traffic generated this message. This
information is conveyed in the packet payload instead and immediately
follows the header of a packet.

Although the payload of an ICMP packet depends on the message, it
typically quotes the beginning of the packet that triggered the response. This

80 4 1612 2420 3228

Checksum

Message body
(for error messages, encapsulated portion of original IP datagram)

CodeType
134 Chapter 9

makes it possible for the recipient to determine the communications to which
the message applies and which application should be notified of the problem.
It can also be used to ensure that the sender of the ICMP packet is actually
somewhere on the legitimate network route between the two machines, rather
than outside them. Otherwise, the sender would not be able to see the actual
data being exchanged. (In particular, they would not be able to determine the
exact sequence number in TCP packets.) This prevents malicious bystanders
from sending bogus messages announcing connectivity problems and forcing
one of the endpoints to drop a connection—or at least in theory. Naturally, it
can be quite difficult to tell the good from the bad since some systems are
notorious for mangling or misquoting the original data.

Enter Passive Fingerprinting

How does the design of this protocol relate to user privacy? The answer is a
bit bizarre: although the design of IP, TCP, UDP, and ICMP packets is
generally fairly strict, and the information transmitted in these headers is not
particularly verbose, differences in the way various operating systems add
information to these packets makes it possible to tell not only the type of
operating system in use but even the specific version of an instance of a
machine. The differences are particularly evident when dealing with traffic
that is not clearly and appropriately discussed in the specification or that is
not analyzed during normal quality assurance routines (say, an incoming
packets with an illegal combination of flags such as SYN+RST).

Intensive research into differentiating systems by stress-testing their imple-
mentations has shown that it is safe to conclude that no two IP suite
implementations in operating systems are the same. It is often possible to
use sophisticated analysis to distinguish between the same system running on
slightly different platforms or between slightly different versions of a system.
Active analysis tools such as Fyodor’s NMAP, a TCP/UDP fingerprinter and
port scanner, and Ofir Arkin’s Xprobe, an ICMP fingerprinter, exploit the
flaws or oddities in every system and identify operating system genre and
version by sending various types of malformed or unusual packets and then
measuring and analyzing the responses they trigger.

Examining IP Packets: The Early Days

But the techniques of system fingerprinting do not stop here. In fact, poking
the remote system by sending suspicious and easily detectable data is perhaps
the least subtle way to approach this problem.

In early 2000, two folks at Subterrain Security Group, identified only by
the nicknames bind and aempirei, demonstrated that it is often possible to get
information about a distant entity on a network without conducting any
intrusive communications with the remote party or, for that matter, without
initiating any communications at all. (Their code and findings were first
presented at DefCON 8, a slightly overrated hacker trade show of sorts, back
Foreign Accent 135

in 2000.) Their technique, today called passive fingerprinting, involves
passively (duh) observing casual legitimate traffic originating from a remote
system. Although the metrics this technique uses are much more subtle and
limited than those deployed by Fyodor and his predecessors, a good dose of
research (to which I am proud to have made several contributions) has
provided enough observations to achieve a fairly amazing level of precision.

To better understand what can be told from a single packet received
over the network, let’s take a look at the metrics upon which we can base
passive fingerprinting and examine what they can tell us about the other
party. This exploration is based on dissecting the most popular type of traffic
on the Internet—a legitimate TCP packet in IP wrapping.

Initial Time to Live (IP Layer)

Recall that the TTL field controls the number of systems through which a
packet can pass before being discarded as undeliverable. The packet’s TTL
value is decreased each time it passes a router, until TTL reaches zero, at
which point the packet is discarded.

Because there is no strict requirement as to how this field should be set by
the sender, many IP stack developers just roll the dice when determining the
default for their pet system. Although a passive bystander cannot determine
the packet’s exact initial value without additional tests (because the packet
would have surely crossed several routers before being observed), they know
that its initial value must have been higher than the actual observed state. Too,
the average distance to a remote computer on the Internet usually does not
exceed 15 hops, and it is unusual for two systems to be more than 30 hops
apart. As such, you can safely assume that the original value lies somewhere
between the observed TTL and the observed TTL + 30 (but is less than 256, of
course).

Because we know the initial values used by popular operating systems, we
can hone in on the operating system genre the sender is likely running. (Linux
and BSD-derived systems usually stick with 64; Windows developers use 128,
and some true Unix descendants use 255.) Then, once we determine the
operating system that sent the packet, based on this and other factors, we
might also be able to determine how far the sender is from the observation
point by subtracting the observed TTL from the value known to be used
initially. By correlating this value with the actual previously observed or
otherwise known distance to his network, we might then be able to draw
some conclusions about the organization of the sender’s internal network.

The Don’t Fragment Flag (IP Layer)

The DF flag says, “If this packet does not fit over a specific network link,
don’t fragment it; just discard it.” By observing whether this flag is set, we can
determine whether the system uses the PMTUD mechanism described
previously, which gives us yet another hint as to the operating system in use.
136 Chapter 9

This also distinguishes between two sizable groups of systems: only newer IP
implementations use this technique, and all others have no interest in
enabling this flag in packets they send out.

The IP ID Number (IP Layer)

As mentioned earlier (in the discussion of the shortcomings of packet
fragmentation), certain PMTUD-enabled systems set the IP ID number to
zero on some (or all) outgoing traffic, because they assume that the traffic
will not be fragmented and because of security concerns about displaying IP
ID numbers (as you’ll see in Chapter 13). Consequently, we can identify
those systems by examining whether incoming packets have the IP ID
number set to zero.

However, there is a catch. Although some PMTUD-enabled operating
systems always set the IP ID to zero, some other systems can also set IP IDs
to zero at some point, simply because there aren’t that many IP ID possi-
bilities to choose from. In other words, if you see a packet with an IP ID
that is nonzero, it is safe to assume this is not a system that uses zero values
for all outgoing communications. However, if you see a zero value in a
packet, you might be seeing a particular species of PMTUD-enabled system,
but you could also be seeing a “regular” system that has simply chosen zero
for this packet, by chance.

Although the probability of this occurring is low, it is not quite negligible
either. You might either want to take zero IP ID cases with a grain of salt
(and only use nonzero IP ID observations to narrow down the set of possible
operating systems) or to conduct several observations for the same source to
confirm that zero values are always used.

Type of Service (IP Layer)

By design, this field should be chosen to correspond to the priority and type
of the traffic in order to give interim systems a hint as to how to handle the
packet, but it almost never is. Most operating systems set this field to an
arbitrary fixed value because developers can set the value as they want
without, in practice, affecting the operations of TCP networking. Depending
on the developer’s ego, they may merely default this parameter to zero or
consider it appropriate to tag all communications originating from their
system as “low latency,” “high reliability,” or some other setting using a
combination of bits in this field.*

This should give us an advantage—by knowing the default values for
particular systems, we can once again narrow down the number of possible
systems the sender might be using. To add to the confusion, however, the
value of this field is sometimes changed for all outgoing traffic by certain

* Some developers even choose to set the Must Be Zero bit of this parameter—which should
never be set in a legitimate application—presumably just to make a style statement.
Foreign Accent 137

naughty DSL operators and other ISPs. Their hope is that some remote
routers on the other side of the globe will fall for the trick, trust that their
traffic, tagged as “high priority,” deserves expedited handling, and prioritize
it over other connections, thus providing this ISP’s clients with faster
browsing (doubtfully so).

As is the case with operating systems, the ISP’s choice of Type of Service
parameters is rather arbitrary. (For example, one Swedish provider uses a
fairly unique and interesting combination of priority bits set to a value of 3
and uses Type of Service bits set to “high throughput.”) This practice, in
turn, makes it quite easy to detect traffic originating from particular ISPs by
spotting their unique selection of Type of Service bits, without the need to
perform active analysis such as WHOIS Registry lookups for the source IP.

Nonzero Unused and Must Be Zero Fields (IP and TCP Layers)

The specification for IP and TCP calls for a number of fields to be reserved
for future use. All current systems should set these fields to zero so that a
special meaning can be assigned to nonzero values at these positions in a
packet in the future.

Needless to say, these are not zeroed in some implementations prior to
sending, as they ought to be. This problem is not likely to be caught in the
quality assurance stage because it causes no noticeable problems—other
systems assume it is better safe than sorry and do not reject packets just
because of this nuisance—and as such, this flaw can persist for ages (perhaps
until those bits are actually used as a part of some TCP extension, causing it
to fail spectacularly while talking to those broken systems). Once again, the
ability to examine those values is a precious source of information that can
lead us to a more accurate identification of the sender operating system.

Source Port (TCP Layer)

The source port identifies the party to a connection on the sender’s side. Each
system has a different policy for assigning so-called ephemeral (originating)
ports for outgoing connections, and by examining the observed port number,
it is often possible to determine the source operating system. Moreover,
systems that perform masquerading commonly use a fairly specific range of
ports for this purpose. (Masquerading, or many-to-one network address
translation, involves rewriting outgoing traffic from a private network so that
all connections appear to originate from the masquerading system and all
responses are translated back and delivered to the actual sender when
received by the system.)

Masquerading is commonly used by both corporate and home networks in
order to preserve address space. The internal network can use a large pool of
addresses that, technically speaking, are not assigned to them and that are not
routed there (or anywhere else) from the Internet. However, systems using
those addresses can still access the Internet by forwarding their outgoing
138 Chapter 9

connections through an agent box that uses its own, legitimate public address
to reach the remote system in the name of the initiator. This approach also
protects internal systems, making it impossible for an outsider to initiate a
direct unsolicited connection to the system, while allowing only insiders to
connect to the outside.

Examining the range of source ports chosen by the other party makes it
possible to both make a better guess at the operating system the sender is using
and (once the range is correlated with other observations) determine whether
the sender is in a private network using address translation (in which case,
source port ranges expected for the system and actually observed would most
likely not match). If the sender’s network is using address translation, it is also
possible to draw certain conclusions as to the type of the address translation
device, because various products use distinct ranges.

Window Size (TCP Layer)

Recall that the window size setting determines the amount of data that can be
sent without acknowledgment. The specific setting is often chosen according
to the developer’s personal voodoo rules and other religious beliefs. The two
most popular approaches say the value should be either a multiple of the MTU
minus protocol headers (a value referred to as Maximum Segment Size, or
MSS) or simply something sufficiently high and “round.” Older versions of
Linux (2.0) used values that were powers of 2 (for example, 16,384). Linux 2.2
switched to a multiple of MSS (11 or 22 times MSS, for some reason), and
newer versions of Linux commonly use 2 to 4 times MSS. The Sega Dreamcast,
a network-enabled console, uses a value of 4,096, and Windows often uses
64,512.

An application can sometimes change the window size value set by the
operating system in order to boost performance, but it seldom is. (The
presence of a value that does not match the default value that we would
expect for an operating system is a good way to detect a specific application;
one of the few examples of such applications is Opera, a moderately popular
web browser.)

Urgent Pointer and Acknowledgment Number Values (TCP Layer)

The values specified in the urgent pointer (16 bits) and acknowledgment
number (32 bits) fields are used only when a corresponding TCP flag—URG
or ACK—is set in the packet. If these flags are not set, the values should be
zeroed, but they often are not. Some systems simply initialize them to
something nonzero, which causes no real problem: because the values will
not be interpreted if an appropriate flag is not set, they simply serve to
identify a particular system.

In some cases, however, these values are not initialized at all and are
simply copied from whatever is found in the buffer being used to construct
the TCP packet at the moment. I observed this behavior with Windows 2000
Foreign Accent 139

and XP stack implementations while working on passive operating system
fingerprinting: whenever two TCP sessions occurred at once, these values
leaked some of the information from a previous session to the current one (a
case we will return to in Chapter 11). This tells you that the person is doing
something else in the background and discloses some of the information
transferred to another party. Hallelujah!

Options Order and Settings (TCP Layer)

The exact ordering and selection of options in a packet is unique to each
system. Because there are no rules governing how options should be ordered
in a packet, there are certain “signature” combinations. For example,
Windows uses a characteristic sequence of “MSS, NOP, NOP, Selective ACK
Permitted” options on SYN packets; Linux usually sticks with “MSS, Selective
ACK Permitted, Timestamp, NOP, Window scale.” Naturally, this once again
serves as an excellent way of telling systems apart.

Window Scale (TCP Layer, Option)

A scaling factor for the window size is usually set to zero. However, some
systems either default to a higher value or permanently increase the parameter
for a specific type of traffic when they conclude that it is reasonable to do so,
for example, if the user just fetched a pirated movie from a P2P network or
completed an extensive download of a different kind (the latter is naturally a
bit less likely).

Maximum Segment Size (TCP Layer, Option)

This field is fixed to a specific value on some systems; on others, it indicates
the type of direct network hookup of the device. Different network types
have different MTUs, making it possible to tell whether a person uses a high-
speed DSL link or a puny modem line.

Time-Stamp Data (TCP Layer, Option)

Since this value often corresponds to system uptime, it is often possible to
determine it by observing the time-stamp option. Furthermore, given a set of
operating systems, it is possible to differentiate them and track each one by
checking time-stamp variations in incoming traffic: different systems will
have different uptimes (and are quite unlikely to have identical boot-up
times), whereas the same computer would maintain a continuously
increasing time-stamp parameter value.

This comes in quite handy in two situations. The first is when a set of
systems acts under a single IP, as with masquerading. In such a case, a curious
webmaster can determine how many unique users from corporation X
140 Chapter 9

visited their page and the whereabouts of each visitor to the websites they
operate, even if all requests originate from one address and appear to be
indistinguishable at first.

The other application is for tracking a single user who, for whatever
reason, hops IP addresses. Why would one bother, and why would the other
party want to determine if the user is doing it? For example, they might be
switching between a pool of dynamic IP addresses assigned to a dial-up line
(by disconnecting and connecting again), in hopes that their attack attempts
will appear to be a set of meaningless, uncorrelated activities, rather than a
well-planned, extensive probe. Or they might want to bypass interaction
restrictions on a web forum, in an online poll or voting contest (with some
old-fashioned ballot stuffing), and so on. All are common pastimes of the
new generation.

The time-stamp option’s measurement of time is usually precise, because
it is based on a clock that most commonly ticks at 100 or 1,000 Hz (although
some systems use 64 or 1,024 Hz, and values in between). This precision is
enough to differentiate even similar boxes that were all booted up nearly at
once after a power failure, and thus it provides extreme accuracy.

Other Passive Fingerprinting Venues

In this chapter, we have looked at the most common metrics used to
determine the operating system of a remote host (and to track its users)
without their ever knowing. But many exciting, yet lesser explored aspects of
communications beyond these basics can be used to achieve the same ends,
and more.

For example, an interesting variant of fingerprinting is related not to
examining the packets themselves, but to measuring the timing and response
rates for certain ICMP messages, TCP retransmissions, and similar features.
The values used for all the time-out and retransmission count settings provide
a good way to precisely and uniquely fingerprint a system. A CRONOS project,
based on the research by Franck Veysset, Olivier Courtay, and Olivier Heen of
the Intranode Research Team, aims at providing an active fingerprinting
tool based on this set of metrics, but passive fingerprinting applications are
just as tempting.

Another promising lead is the effort to combine and measure many
other anomalies or uncommon settings, such as a sender’s use of specific
time-stamp values, sequence numbers identical to acknowledgment
numbers, or unusual flags, as well as data payload in control packets, the use
of the EOL option, and so on. These characteristics can also be used to
differentiate between operating systems, although these characteristics are
often specific to a small set of implementations. (The algorithm used for
choosing initial sequence numbers is often a valuable source of information,
as you will see in the next chapter.)
Foreign Accent 141

Passive Fingerprinting in Practice

These metrics make it possible to precisely identify operating systems and
their configuration as well as network parameters and to track users
efficiently and silently. Although it may seem difficult to believe that this is
possible, a tool I have authored, p0f, implements most of the techniques to
gather and analyze the information based on the analysis of SYN, SYN+ACK,
and RST packets in a completely passive manner, with a high rate of success.

Let’s look at an example packet to see the effectiveness of this approach.
Following is a set of important parameters extracted from an actual TCP
packet captured on the network. What can this tell us about the sender’s
operating system?

A lot. Here’s what we can infer from these observations:

 Because the DF flag in IP headers is set, the system must use path MTU
discovery. Matching systems that use path MTU discovery are newer ver-
sions of Linux, FreeBSD, OpenBSD, Solaris, and Windows. We can rule
out IRIX, AIX, many commercial firewalls,* and other systems that do
not implement PMTUD for reliability reasons.

 The time to live of the packet is 57. We know that the initial TTL value
could not have been lower because it might only be decreased in transit,

Internet Protocol (Version 4)

Source host nimue (10.3.0.1)

Destination host nightside (10.3.0.3)

Flags DF

Time to live 57

Identification number 4428

No IP options (packet size = 20)

Transmission Control Protocol

Source port 3803

Destination port 80 (HTTP)

Flags SYN

Sequence number 1418000073

Acknowledgment number 0

Window size 32120

TCP Options

#1 Maximum Segment Size 1460

#2 Selective ACK Permitted

#3 Timestamp 170330930

#4 Window scale 0

* A firewall is essentially a filtering router, often also capable of understanding and making
decisions based on higher-layer traffic characteristics.
142 Chapter 9

and it is unlikely that the value exceeds 87 (that would be a system really
far away). We can match this with many Unixes (all of which use an ini-
tial TTL of 64) but we rule out Windows (with an initial TTL 128), ver-
sions of Solaris prior to 8 (255), and several network appliances (32).

 The identification number of the packet is nonzero. This rules out Linux
2.4 and newer versions, as well as several recent releases of other popular
operating systems.

 The source port falls in the most commonly used range (1,024 to 4,095).
Although this alone doesn’t help us to exclude any systems, we can safely
assume that the system had established more than 2,700 connections
before this one and is unlikely to be behind a masquerade.

 The option selection and ordering (MSS, Selective ACK, Timestamp,
Window scaling) is specific to Linux 2.2 and newer.

 The window size is a multiple of MSS, that is MSS*22. The only system
that matches this is Linux 2.2.

 There are no observed anomalies, RFC violations, or other quirks in the
packet, which confirms the hypothesis that Linux is the system being
run.

 The Maximum Segment Size indicates an Ethernet or modem PPP con-
nection (MTU of 1,500).

 The system’s uptime is approximately 19 days, and it is located 7 systems
away.

Certainly, single metrics can be modified by applications or user tweaks.
(For example, users tend to modify TTL or enable or disable certain settings
after reading network optimization guides or running “system doctor”
applications.) However, by drawing a series of conclusions based on our
observations we come up with a reliable way to determine the machine’s
operating system by identifying the system that appears to be the best match
in most categories.

In this case, we have good reasons to believe that the system in question
is Linux 2.2 and that the sender is connected to the Internet via Ethernet or
dial-up modem. Based on this assumption, we can also conclude that the
system is 7 hops away (64–57, where 64 is the initial TTL for Linux systems)
and that its uptime is close to 20 days. If more users are hiding behind this
particular IP, we can easily count them and differentiate their sessions based
on their system characteristics and time-stamp data, if available.

Exploring Passive-Fingerprinting Applications

When observed by either the recipient or a bystander (such as an ISP
between the sender and the recipient), network traffic can provide infor-
mation beyond the actual data exchanged, including certain parameters of
the sender’s system. As suggested previously, the exposure is important and
quite interesting because, unlike the data transmitted by applications, it is
Foreign Accent 143

not necessarily obvious, and the disclosure is often beyond any user’s control.
Although users can change their browser settings and those of other appli-
cations in order to prevent being monitored, identified, and tracked, the
disclosure that occurs on the lower IP or TCP layer can easily undermine this
effort by revealing to the observer just as much about the victim as the victim
is trying to hide. It can also carry data of more fundamental significance to
the security of the infrastructure, including some useful hints about how the
victim’s network is constructed and protected.

That said, short of privacy invasion, passive fingerprinting can also be
useful for quite legitimate reconnaissance tasks. The set of practical (and
commonly deployed) applications of passive fingerprinting extends through
the entire ethical spectrum, from malice to rightful defense.

Collecting Statistical Data and Incident Logging

One of the more legitimate uses for passive fingerprinting is that of moni-
toring the network to perform noninvasive and objective analysis of the
platforms and network environments used, to ensure that users receive
service that is optimized for their software, and to guarantee that no sizable
group of users is neglected in some way. Too, gathering data about potential
attackers or other unauthorized activity can be greatly enhanced by the use
of passive fingerprinting. Indeed, passive fingerprinting is particularly
popular in the field of honeypot research.

NOTE Honeypots are a concept aggressively promoted and researched by Lance Spitzner of Sun
Microsystems.11 The goal is to let the owner learn about their opponents and their
goals, using devices (honeypots) whose value lies in their unauthorized and illicit use
and that have no actual significance for the infrastructure, although they are designed
to appear as if they do.

Content Optimization

One active application for passive fingerprinting relies on providing services
optimized for a specific recipient based on an immediate analysis of the setup
they are using to access the server. I consider it my duty to include a shameless
plug here for one of my aforementioned tools, p0f. p0f offers a method for
querying it about the parameters of recent incoming connections from other
applications, which makes the task of content optimization much easier: a web
script does not have to know a lot about TCP and IP, can simply ask p0f, “Hey,
who is that guy I am talking with?” and then get a useful response.

Policy Enforcement

The detection and eventual blocking of obsolete or noncompliant systems
(say, devices that violate a corporate policy or pose a security risk) or infes-
tations of unauthorized network hookups is another interesting application
for passive fingerprinting. Since version 3.4, OpenBSD has provided a
144 Chapter 9

method for routing and redirecting traffic based on the operating system
detection results, hence making policy enforcement based on remote
operating system characteristics quite viable. The same functionality is now
provided as a part of Linux netfilter patch-o-matic code. Both implemen-
tations are closely inspired by or based on p0f.

Poor Man’s Security
Passive fingerprinting can also be used to minimize certain types of exposure.
Although with some effort it is possible to fool the fingerprinting technique,
fingerprinting might be used to prevent certain types of clients (such as
Windows systems, a platform most commonly infested with spyware, backdoors,
and worms and often used for unsolicited mass email distribution or attack
hops) from using certain underlying services on the network, while allowing
“less suspect” entities to access them.

Security Testing and Preattack Assessment

Active fingerprinting is often stopped in its tracks by firewalls and other
solutions that carefully filter and analyze IP traffic. Passive fingerprinting,
however, can examine even aggressively protected systems and can map
networks without triggering any alerts.

The approach to security testing and assessment using passive
fingerprinting is twofold. First, it can be used to analyze incoming traffic.
Although the observer must wait for the remote party to connect to their
systems, such a connection can be quite easily induced without triggering
suspicion. In fact, it is often sufficient to send a specific email or a link to a
website to the victim behind even the most sophisticated packet-filtering
solution. Second, passive fingerprinting can be used to analyze the responses
to legitimate traffic to an available service in order to determine the remote
party’s parameters. If a black-hat hacker knows how to compromise an
internal network, but wants to know more about its internals in order to
minimize the risk of being detected prematurely, passive fingerprinting can
come in handy. The same can be said about legitimate security testing for
which one is paid by the entity that undergoes the test.

Customer Profiling and Privacy Invasion

Many companies go to great lengths to gather and sell valuable information
about people’s habits, preferences, and behavior. Although this information
is usually used for marketing purposes, it could—in theory—be used against
a specific person. The ability to track users by correlating fingerprinting
results from several locations that they have visited, whether to map
internal networks and software used, track individuals, or gather other
valuable statistical data, can be a source of information that might either
have considerable value by itself or be used to enhance the attractiveness of
other not-quite-ethical offerings.
Foreign Accent 145

Espionage and Covert Reconnaissance
The ability to gather additional information about a competitor’s network
architecture and user behavior and preferences is often quite tempting.
Though this may sound like bad science-fiction, it is simply a more targeted
type of the profiling discussed above.

Prevention of Fingerprinting

Given the complexity of a typical IP stack, it is extremely difficult to prevent
fingerprinting in general, but it is possible to address specific issues and disable
specific types of known fingerprinting software by determining what parameter
it relies on most and then changing it. For example, certain packet-filtering
solutions, such as pf in OpenBSD, provide a packet normalization service that
ensures that all outgoing traffic “looks the same.” Although this might prevent
some aspects of fingerprinting to some degree or might simply make finger-
printing more difficult by rendering some popular programs less accurate, it
does not solve the problem completely.

Although the thorough and seemingly exhaustive manual or automated
modification of certain operating system settings or TCP parameters can make
system identification more difficult, certain behaviors are buried deep in the
kernel and are not customizable. For example, it is fairly difficult to change the
option ordering in a packet. Moreover, when users make manual modifica-
tions, they risk introducing unique characteristics into packets originating
from their system, which only further affects their privacy and anonymity.

Fortunately, certain solutions do address specific types of testing. For
example, IP Personality by Gael Roualland and Jean-Marc Saffroy alters the
TCP stack so that it appears to specific tools as if it comes from a different
operating system. If you fancy, you can use IP Personality to make NMAP
think that your system is a Hewlett-Packard laser printer. However, some
problems arise. For one, it is easy to actually weaken a system’s TCP stack by
attempting to impersonate a device that uses a weak stack to begin with. For
example, if, in order to comply with a printer’s particular characteristics, you
use trivial sequence numbers on all connections, someone will sooner or
later take advantage of this to easily disrupt or tamper with your traffic. Too,
software such as IP Personality will only work against the most popular, well-
known, and well-documented tools, but it offers no guarantee of success
against the rest, because the characteristics examined by each tool and the
way these characteristics are interpreted are different from place to place.
You can only hope to fool the least determined, most naive, “mainstream”
attackers who use tools you know about.

NOTE Unlike masquerading agents, proxy-type firewalls and other proxy devices do not
forward packets, but intercept connections instead and initiate new ones using their
own IP stack. These are the only complete solution to third and fourth OSI layer
fingerprinting, but they have a serious impact on performance and are more prone
to problems due to introducing vastly increased complexity. Besides, a higher-level
fingerprinting of the application itself is still possible.
146 Chapter 9

Food for Thought: The Fatal Flaw of IP Fragmentation

While discussing the defining features of the Internet Protocol, I casually
mentioned that the process of packet fragmentation and reassembly is fatally
flawed. This notion comes primarily from a fairly interesting observation I
had while writing this book. Although the concept is related to an active and
noticeable attack performed by an openly rogue entity (although it is not
easily traceable back to that entity), it is a unique and interesting flaw
inherent in the design of the Internet Protocol. It is not the result of a clearly
defined mistake, but more a collision of paradigms on different design
layers, both, curiously, specified by Jon Postel, one of the fathers of IP suite. I
have decided to include it here to close this chapter, as food for thought for
those interested in the pathology of computer flaws.

First, let’s look at the state of affairs today, or perhaps yesterday, as we are
dusting off a fairly old attack technique, mentioned previously in the TCP
discussion. The technique in question, blind spoofing, was first described by
Robert T. Morris in the mid ’80s.12 It had its golden age a decade later, but
its significance has decreased ever since. We’ll focus on a specific example of
blind spoofing, that of injecting certain data into an existing session, to
disrupt it, to convince the server that its user has issued a specific command,
or to convince the user that they are getting a specific response from the
server. This technique is often referred to as connection hijacking.

Under normal circumstances, a malicious bystander, wanting to insert
data into an existing TCP stream, first needs to determine the sequence
numbers used by at least one of the parties. Even though such an attack is
highly time sensitive and must be targeted against a specific, existing
connection, it can be (and has been, many times) performed successfully
when the sequence numbers are predictable. In fact, in the late 1990s, many
tools were used to disrupt Windows TCP sessions to Internet Relay Chat
(IRC) networks (for amusement or other), exploiting the Windows weak
initial sequence number (ISN) selection algorithm; it was trivial to inject a
single RST packet here and there, kicking a person off the chat server. This is
what we called fun back then.

Today, the situation is a bit different. Thanks to the efforts of many
researchers (including the most humble author of these words), developers
have worked hard to make initial sequence numbers in TCP connections
more difficult to predict. Many attempts to improve the quality and strength
of sequence number generators in popular operating systems have, in the
end, rendered ISN prediction attacks harder, with few rather unnoteworthy
exceptions. Systems that use sequential ISN numbers are largely extinct; an
attacker, unable to determine the numbers used in a conversation with
another party, is forced to search the entire 32-bit space of possible values in
order to perform a precise data insertion attack (fewer if they only want to
abort or irrecoverably mangle the session). That’s some 4,294,967,296
combinations, and an attack like this requires the attacker to send an average
of about 80 GB of data in order for it to succeed. Needless to say, this is not
considered particularly feasible.
Foreign Accent 147

However, as to the actual benefits you can gain from a successful data
injection attack, little has changed. Even though an increasing amount of
communication is exchanged over channels that support encryption, the
relevance of this type of attack has not decreased significantly; plenty of
fruitful attack scenarios persist. Here are some examples.

 Data can be inserted into unencrypted server-to-server or router-to-
router traffic, such as an email exchange, DNS zone transfers, BGP com-
munications, and so on. Much of the server-to-server traffic can be gener-
ated by the attacker and yet contain sensitive or trusted information,
which makes a targeted and timed attack more feasible.

 Data can be inserted into unencrypted client-to-server traffic, such as File
Transfer Protocol (FTP) file downloads or HyperText Transfer Protocol
(HTTP) responses. This attack can be used allow malicious, incriminat-
ing, or derogatory content to be provided to a visitor to a high-profile
server or to make it appear as if a compromise attempt originates from
an innocent visitor.

 Data can be inserted into an existing session to exploit a vulnerability in
the service at a stage that is not available to a nonauthenticated user.
This applies both to encrypted and unencrypted traffic. For example, a
service such as POP3 (Post Office Protocol, Version 3, a remote mailbox
access protocol) can accept various commands only if the user previously
successfully logged in. Prior to logging in, the only commands available
are those that directly pertain to the authentication process (USER and
PASS directives). Without a valid password, the attacker cannot exploit a
flaw in one of the commands available later (such as RETR, a command
used to fetch a specific message from a mailbox). However, if the attacker
manages to inject a malicious RETR request into an existing session of
an already authenticated user, they win.

 Even a secure and encrypted, integrity-protected stream is susceptible to
a denial of service attack when a session is disrupted or terminated by a
single, carefully crafted packet.

As such, it is tempting to be able to inject data with little effort, without
having to go through the entire spectrum of possible sequence numbers.
And this is where fragmentation comes in quite handy.

Breaking TCP into Fragments

When an IP packet carrying a TCP payload is fragmented (arguably, a
common occurrence during file transfers, and one that is not always prevented
simply by setting the DF flag as some systems do), the data is traveling the
network in multiple chunks and is reassembled only when it arrives at the
recipient. A clever attacker, in anticipation of this fragmentation, can send a
148 Chapter 9

specially crafted, illegitimate IP fragment, masquerading as one from the
expected sender. Upon receiving this fragment, the recipient might, with
some luck (a matter of precise timing), end up using it instead of the real
fragment in the reassembly of the original packet.

In this attack scenario, the first fragment (containing the full TCP
headers, including exact ports, sequence numbers, and so on) is merged with
a malicious payload spoofed by the attacker. As a result, the attacker need not
know sequence numbers or other session parameters to insert their data into
the frame, thus effectively undermining the entire ISN-generation effort. Once
the attack is complete, the final packet processed by the recipient consists of
valid header data copied from a legitimate fragment and a malicious payload
injected by the attacker.

NOTE The attacker can replace any part of the payload in the first fragment by specifying a
slight overlap between the fragments; many systems honor overlaps between fragments
and overwrite previously received data with a newer copy. In an extreme case, the
attacker can successfully replace all the data within a TCP packet except for the
sequence number.

Naturally, some pieces of the puzzle are still missing. But, other than the
need for precise timing and a knowledge of when the transmission is
occurring,* the attacker in this scenario must overcome only two obstacles:

 The fragment must have a correct IP ID number in order for it to be
merged in. Thankfully, on many systems, this is not a problem, because
IP identifiers are chosen sequentially. As such, the number likely to be
used at the moment can be deduced simply by attempting a test connec-
tion. Some systems, most notably OpenBSD, FreeBSD, and Solaris, offer
randomized ID numbers, which might make the attack more difficult
but will still not prevent it. The attacker simply has to check thousands
(not billions) of combinations, because the IP ID field is fairly small
(only two bytes).

 The TCP header contains a checksum that is verified after reassembly,
and the checksum of the data modified by the attacker must be the
same as that of the original payload. However, because the design of
a TCP checksum is trivial (simply a variation of a straight 16-bit sum),
you can craft a payload that does not alter the packet’s checksum, as
long as the original section to be replaced is known to the attacker.
(This is most often the case, particularly during file transfers when
the attacker wants to insert malicious code or contents in a publicly
available portion of data.)

* Timing itself is not as much of a problem as it might appear at first. The attacker can choose to
send their malicious second fragment slightly in advance; the recipient then creates a reassembly
buffer and waits for the remaining parts to arrive within a certain period of time. Once the first
legitimate fragment arrives, the buffer contents are considered fully reconstructed, without waiting
for the real second chunk to arrive.
Foreign Accent 149

The following simplified checksum of a packet that consists of header
words H1 and H2 and of payload words P1, P2, and P3 illustrates:

C = H1 + H2 ... + P1 + P2 + P3 ...

H1, H2, and C are not known to the attacker. (Headers contain sequence
numbers, and the checksum is affected by this data.) The attacker has no way
to actually examine this packet, but knows that the victim performs a specific
(predictable) transaction on the application level (for example, checks their
mail, downloads a web page, chats with friends, and so on). The attacker can
deduce the payload data P1, P2, and P3 and wants to replace it with their own
malicious words N1 and N2, using a third word for checksum compensation
(CC) so that the packet still validates.

C = H1 + H2 ... + N1 + N2 + CC ...

Solving these equations for CC, we conclude that the checksum must be
compensated with CC = (P1 + P2 + P3 N1 N2). The attacker can then
modify the packet so that the checksum remains the same without knowing
the entire packet; they simply need the replaced bit. This is enough to
calculate the compensation bit correctly and to preserve the checksum.
150 Chapter 9

A D V A N C E D S H E E P - C O U N T I N G
S T R A T E G I E S

Where we dissect the ancient art of determining network
architecture and computer’s whereabouts

Network reconnaissance and mapping is the art of
exploiting a set of information disclosure vectors
inherent in the Internet’s core communications
protocols in order to recognize systems and networks
or to identify and track potential offenders, users,
customers, or competitors. It is perhaps the most developed, most widely
deployed, and most significant and immediately useful application of
passive data analysis to date, but it has its share of problems that affect
both its accuracy and usability in certain scenarios. This is particularly true
for known and tested TCP/IP passive fingerprinting techniques.

Benefits and Liabilities of Traditional Passive Fingerprinting

Use of the passive fingerprinting metrics discussed in the previous chapter
will let you easily identify some characteristics of an originating system and
network. Too, in some cases, these techniques will make it possible to trace
individuals as they change their address or share it with other users of a
single network. You can employ these techniques without interacting with

the remote party as long as you can persuade the observed earthling to
interact with a specific network or for as long as their network communi-
cations passes through a specific set of systems controlled by a sufficiently
curious person. Thus, passive fingerprinting, among other uses, enables a
server owner or a specific ISP to acquire massive and completely stealthy
information rather easily.

Passive fingerprinting provides such a remote party with a two-edged
sword. You can deploy it to obtain useful data about the internal structure of
a network, in order to make an attack easier or to learn more about the
networking technologies used (even in a fairly complex environment, as
shown in Figure 10-1). You can also use it (quite rightfully) to monitor your
own network for policy violations (such as illegal connections or access
points that connect an internal network with the outside world) or to track
attackers.

The resulting privacy loss for a single user is generally negligible, unless
the ability to link casual activities performed by a user with the additional
data acquired by fingerprinting, or the ability to track a single user across
domains, is a particular problem (this is most likely true only when the user’s
behavior is questionable to begin with). But the cumulative loss of privacy for
all users could be quite worrisome, and the information gathered through
fingerprinting or fingerprinting-assisted tracking can pose a noticeable
market value. (Your personal data can be sold for much more to advertisers
if it is combined with information about your preferences and interests, for
example.) Too, the exposure of the technical inner workings of a network
can indeed be undesirable for corporations and other portions of sensitive
infrastructure.

Nevertheless, not all is lost just yet. As indicated previously, there are
some problems with using passive fingerprinting to obtain accurate results.
The reliability problem with traditional passive operating system finger-
printing technique stems from how easy it is to fool the observer by carefully
tweaking some or all the network settings used by a system that is subject to
observation. Even if completely altering all settings is not particularly easy, a
partial modification might be enough to thwart certain automated analysis
attempts (hooray!) or mislead a researcher investigating a malicious incident
(oops). Although not a large-scale problem, and thus not a concern for
statistical analysis, the reliability issue can cause concern in individual cases.

Moreover, the user tracking and counting capabilities of the finger-
printing approach we painfully dissected in Chapter 9 rely almost entirely on
the availability of parameters such as the time-stamp information in TCP/IP
packets. All other characteristics are either standardized or have too few
possible options to provide a unique positive identification of a single com-
puter, except in the most unusual cases. If such data is unavailable because
this particular performance extension is disabled (as with most Windows
systems, for example), the precise identification of a system is not possible.
152 Chapter 10

This lowers the potential value of the data both to members of an
overzealous, evil conspiracy cabal (that, as we all know, is after our most
precious secrets), as well as to security testers or incident analysts (computer
forensics experts). Without this time stamp–based identification capability, it
can be impossible to differentiate several identical systems running behind a
masquerade or to identify an individual whose IP was changed once they
reconnected their modem.

Figure 10-1: You can use passive fingerprinting to map a complex and even inaccessible
network simply by observing traffic from some of the nodes (the most important being mea-
suring operating system characteristics, TTL, and MSS values on packets) and then deduc-
ing the presence of other components to match the observed characteristics variances. It is
left to the reader to determine how this network could be conclusively mapped out by
merely observing traffic on the outside.

Another, perhaps more interesting, promising, and challenging passive
fingerprinting method, however, easily addresses the shortcomings of passive
fingerprinting. This new approach makes it extremely difficult to mislead a
remote observer and is almost universally suitable for tracking systems.
Perhaps more interestingly, the technique makes it possible to differentiate
between instances of exactly the same system in exactly the same config-
uration, taking masquerade detection to a whole new level. This technique
uses the properties of sequence number generation mechanism within TCP/
IP, and it can produce some pretty pictures, too.

Internet

Internal server
TTL = X-3
Server OS

Trusted
workstation
TTL = X-3

Laptop
TTL = X-3
Distinct MSS
(VPN client)

Web server
TTL = X-2
Separate
address

Remote access
(dial-in)
VPN server

Switch
Internal
firewall

External
firewallSwitch

Router at
distance X

Office
workstations
TTL = X-2

This denotes directly observed (active)
network components. The existence
of the remaining systems can be
effectively deduced.

Phone line

ATMMASQ

M
ASQ
Advanced Sheep-Count ing St ra tegies 153

A Brief History of Sequence Numbers

Recall from the previous chapter that initial sequence numbers are a
mechanism used within TCP to ensure session integrity, and—de facto—to
guarantee its most basic security resilience.

The only truly universal way to protect a plain-text TCP/IP session
against data injection, hijacking, or fakery by a complete stranger is to ensure
that the initial sequence numbers are selected in a manner that is unpre-
dictable to the attacker. This reduces their chances of making a correct blind
guess (and spoofing a packet that will be accepted as a legitimate part of
someone else’s session) to a point where this risk is of little concern in the
real world, even if the attacker takes the system by storm, sending thousands
of packets in hopes that at least one will have a roughly matching sequence
number.

In the early ’80s, the security aspects of TCP-based communications did
not seem to be a problem worth worrying about: the Internet was a fairly
small, self-contained, and perhaps a bit elitist environment used by scientists
and the like. As such, the RFC specification of the TCP protocol did not
specify a requirement for initial sequence number selection, and almost all
early (and some not quite so early) TCP/IP stack implementations used
trivial, time-, or counter-based algorithms that returned subsequent numbers
for subsequent connections. At the time, the idea of randomizing these
numbers seemed a needless waste of precious computing power. Too, in
doing so, the likelihood of a sequence number collision would be needlessly
increased. (Collision is a situation in which two ISNs chosen for subsequent
connections to a host are too similar, thus creating the possibility that old
packets arriving in an untimely manner could be interpreted in the context
of a wrong connection. Naturally, picking numbers randomly is more likely
in the short run to produce collisions than picking sequentially increasing
numbers.)

The Internet has advanced a lot since the 1980s, of course, with its
increased availability and rapidly changing and growing user base; as more
and more important data was sent over the wires, the security issues became
more relevant. Unfortunately, popular and reliable integrity and privacy
protection mechanisms have yet to catch up with the Internet’s expansion:
not all services support encryption, not all users know when to use it, and,
more important, most users do not know how to properly validate crypto-
graphic certificates provided by remote parties.

Over time, and particularly with the widespread practical abuse of the
weak ISN-generation mechanism in the mid ’90s (although mostly limited to
online chat services and so forth), it became obvious that it was necessary to
provide rudimentary integrity protection for TCP/IP streams. This was even
important for the marginal fraction of all traffic that is actually crypto-
graphically protected, because a disruption of the carrier layer by injecting
junk data or RST packets is just as undesirable, even if the impact is only
limited to disconnection (denial of service), as opposed to data injection.
154 Chapter 10

Because the only way to fix things (without a major overhaul of just
about every TCP-based communication scheme known to man) was to keep
the protocol difficult to attack by itself, many developers undertook efforts
to move away from the obsolete and dangerous trivial one-increment
ISN-generation mechanisms. Although these efforts did indeed help to
improve connection resilience to blind spoofing, they also opened several
interesting information-gathering vectors that allow for more advanced
fingerprinting of systems and networks, be it for security assessment or a
planned attack.

Getting More Out of Sequence Numbers

Naturally, it is important to be able to tell the good ISN-generator implemen-
tations from the bad, both for quality assurance and for security testing. Until
recently, the usual approach to assessing the quality of generated initial
sequence numbers relied either on source-code analysis or on certain one-
dimensional tests of the bit stream of subsequent ISNs to estimate the
entropy carried by each bit of the output. The former is often complex and
costly, is prone to errors, and is not always possible (in the absence of
publicly available source code for a specific system). The latter lacked the
ability to capture more subtle sequence dependencies and other character-
istics of a generator in a reliable and readable way, focusing instead on more
statistical imperfections than on the correlation between values returned for
subsequent connections. Obviously, proving that an implementation is
secure by observing only its output is just about impossible, but it is easy to
check for certain common problems and to ensure that the underlying
algorithm is reasonably robust. And yet, even there, the methods we used to
check for this were rather weak at best.

Both the original, insecure ISN-generator designs and some of today’s
solutions are based on additive, iterative arithmetic systems that calculate
new values based on their previous output; only the complexity of the
recalculation algorithm and the amount of practical unpredictability intro-
duced in the process seem to vary. The only secure designs that are not based
on traditional arithmetic are some newer ones that use relatively slower but
cryptographically secure shortcut functions to implement iterative systems.
In all cases, though, it would be interesting to look for a nontrivial
correlation between subsequent results produced by the generator for new
connections to detect possible flaws in the algorithm design.

Clearly, if an apparent dependency between ISN-generator output at
time t and one at t+x can be observed, the attacker can choose to connect
in advance of the connection they hope to interfere with or fake altogether,
just to obtain the ISN output at t. Based on their observation of the returned
sequence number, they can then determine the response that will be gener-
ated by the other party in the future (t+x). Hence, the attacker can spoof
a valid packet for that new connection despite not being able to directly
observe the ISN being used.
Advanced Sheep-Count ing St ra tegies 155

With this in mind, in 2001 I performed some research that would
provide a unified method of examining less obvious time dependencies in
sequences of ISNs acquired from remote systems. My work resulted in a
paper that examined some of the ISN-generation algorithms in more
detail, providing a way to detect subtleties that go beyond the detection of
the most obvious patterns and flaws we had been aware of. The paper,
titled “Strange Attractors and TCP/IP Sequence Number Analysis,”1 used
an approach well known in the world of applied mathematics, but quite
novel for networking.

Delayed Coordinates: Taking Pictures of Time Sequences

When dealing with a black-box ISN generator in one of today’s closed-
source systems, you see only its output, a sequence of 32-bit values carried
by TCP/IP packets, not the underlying algorithm. For many operating
systems, the code is proprietary and well guarded, quite beyond the reach
of mere mortals. Even in an open-source system, the sources can be tricky
and misleading, and you can end up following the same mistakes as the
original developer.

The typical input we would have to evaluate would likely look similar
to this:

S0 = 244782
S1 = 245581

S2 = 246380

S3 = 247176

S4 = 247975

S5 = 248771

...

Is the dependency in these numbers immediately obvious? And if so, is
there is a relatively universal method for the computer to follow this and
more complex schemes?

An elegant solution seemed far off. I hoped to develop a method to
identify some universal properties of the ISN’s underlying algorithm based
on the observation of output alone. But before doing that, and in order to
make the analysis easier, it was desirable and quite convenient to assume
that, because many implementations are based on reiterating certain arith-
metic operations, it is better to observe the changes between subsequent
results than to observe absolute values. Watching changes is advantageous
for such algorithms, and would not do much harm to the rest of the possible
generators. To achieve this, we must calculate a discrete derivative of the
156 Chapter 10

input sequence: the increments between elements of S. The resulting
sequence of deltas, D, obviously starting at t = 1, is given by the following
equation:

In this example, the resulting sequence of deltas is:

D1 = 799
D2 = 799
D3 = 796
D4 = 799
D5 = 796
...

By disregarding the actual values and looking only at the dynamics of
ISNs, the underlying dependency becomes more apparent and will generally
remain so for all implementations that rely on this type of arithmetics. (For
systems not based on trivial iterative arithmetics, this has virtually no rele-
vance whatsoever and will not significantly affect the quality of the data for
the purpose of this analysis.)

NOTE A particularly pedantic researcher would also compensate for timing irregularities dur-
ing sample acquisition; here, we assume that a fixed amount of time, a base unit of 1,
always occurs between acquisitions. In high-speed acquisition, however, network perfor-
mance and other events may significantly impact timings. To ensure that these timing
differences will not influence the algorithms that use clock input as a part of the ISN-
generation process, it might be safer to use the following equation instead (in which Tt
expresses the delay between acquiring St1 and St): Dt = (St St1)/Tt.

The advantage of this approach as applied to iterative arithmetics
systems is fairly obvious. Trivial cases aside, however, this method alone is
hardly sufficient: we simply move from one flat sequence of data that is fairly
difficult to analyze to another.

The next thing I chose to do was to convert the sequence of deltas into a
form that could be easily examined by a human or a machine for types of
correlation perhaps less obvious than the previous example. Nothing works
better than a three-dimensional model of the system dynamics for the first
group of the intended audience of the data. Unfortunately, with ISNs we
only have enough information to draw pictures in one dimension, on a
single axis. So how do we turn our information into a neat three-dimensional
shape?

The solution is to extend the data set by applying a coordinate
reconstruction strategy called time-delayed coordinates. We use a method that
extends every sample by constructing virtual coordinates based on the

Dt St St 1––=
Advanced Sheep-Count ing St ra tegies 157

previous samples in sequence. If the existing sample is considered the x
coordinate value, we can use this technique to assign y and z values to every
existing sample, thus constructing a triplet of coordinates—x, y, and z—
sufficient to map every sample to a single point (here, pixel) in a three-
dimensional space. (The technique is not limited to three dimensions.
However, for the dual purposes of visualization and data analysis, it seemed
impractical to choose a higher number. At any rate, most human beings do
not cope with more dimensions too well, at least when sober.)

Time-delayed coordinates are calculated so that the second coordinate
is constructed using the value sampled at t1, the third coordinate corre-
sponds to the value observed t2, and so on. In this particular application,
coordinates for data at time t are given by the following set of equations:

Given a sequence of newly constructed (x,y,z) triplets for a system that
is being tested for time dependencies, it is possible to plot the behavior of
an ISN-generation system in three-dimensional space. Because the location
of a pixel representing a given sample depends both on the “current” value
and on a number of previous results, many even fairly complex depen-
dencies result in abstract but noticeable, irregular density patterns in the
phase space, thus creating a unique portrait of the underlying algorithm.
(When used in reference to such portraits, the term attractor denotes a
shape that maps out the dynamics of a system. The shape (set, space)
represents a “trail” of states through which the system cycles or evolves
when left on its own.)

Figure 10-2 is a rendition of a set of data that originally looked as
follows:

4293832719

3994503850

4294386178

134819

4294768138

191541
4294445483

4294608504

4288751770

88040492

...

xt Dt St St 1––= =

yt Dt 1– St 1– St 2––= =

zt Dt 2– St 2– St 3––= =
158 Chapter 10

Figure 10-2: A three-dimensional rendition of the data set described in the text

Figures 10-3 through 10-5 illustrate several other common yet not
necessarily obvious dependency patterns.

Figure 10-3: A three-dimensional rendition of a data set acquired from a complex but
insecure random number generator function
Advanced Sheep-Count ing St ra tegies 159

Figure 10-4: Rendition for PRNG with no strong correlation but noticeable statistical biases

Pretty Pictures: TCP/IP Stack Gallery

The visualization method seemed to work like a charm, producing unique
and often instinctively worrying, charming patterns for many implemen-
tations that had been believed to be reasonably secure; many of these
pictures can be found scattered on the next pages. But can these pictures
do more than give us a visual representation of hard-to-quantify parameters
and characteristics of a generator? Could an attacker use these mysterious
three-dimensional shapes in meaningful ways, or could a computer examine
them somehow to give us a clear answer about what is wrong and what
is right? Is a sunflower-shaped generator easier to crack than a brick-
shaped one?

Before answering this question, allow me to interrupt myself and
include a short gallery of some of the more interesting results acquired
in the process of writing the original paper. This should help to demon-
strate the wide variety and beauty of some of the observed patterns,
following the ancient rule that a three-dimensional plot is worth a
thousand words. Figures 10-6 through 10-14 show PRNG portraits for
several operating systems.

Not all plots are drawn to the same scale; some shapes are considerably
smaller than others. The scale and other parameters can be read from the
top line of every plot, as shown in Figure 10-6.
160 Chapter 10

Figure 10-5: A common time dependency pattern, as observed in imperfect testing conditions

Figure 10-6: Windows 98. The set shown here has a diameter of approximately 128,
which indicates that subsequent ISNs are increased by a number carrying about 7 bits of
“randomness.” Within the set, there is a strong frequency pattern similar to one of the
examples discussed in the previous section, perhaps suggesting a trivial time dependency
in all results. The size of the attractor is worryingly small.

Current X positionCurrent X position

Current Y positionCurrent Y position

Zoom factorZoom factor

Visible rangeVisible range

Bit size of the viewportBit size of the viewport

Viewport rotation factorViewport rotation factor

Currently visible andCurrently visible and
total plot pointstotal plot points

Currently visible plot pointsCurrently visible plot points
(percentage)(percentage)
Advanced Sheep-Count ing St ra tegies 161

Figure 10-7: FreeBSD 4.2. A 16-bit-wide uniform cube, likely a sign of small but truly random
increments in every step

Figure 10-8: HP/UX 11. A strange x-wing structure, 18 bits wide but obviously irregular,
likely a sign of high-correlation levels of a flawed PRNG
162 Chapter 10

Figure 10-9: Mac OS 9. A similar but slightly different 17-bit structure

Figure 10-10: Windows NT 4.0 SP3. Again, a strong attraction pattern and a tiny 8-bit-
wide attractor
Advanced Sheep-Count ing St ra tegies 163

Figure 10-11: IRIX 6.5. A 16-to-18-bit-wide highly irregular random cloud; likely a flawed
algorithm

Figure 10-12: NetWare 6. A seemingly random system, with a 32-bit-wide attractor cloud,
but consisting of a large number of high-density spots and not uniform
164 Chapter 10

Figure 10-13: UNICOS 10.0.0.8. A strange, 17-bit-wide cloud with irregular stretches of
higher hit probabilities

Figure 10-14: OpenVMS 7.2 (default TCP/IP stack). A 32-bit-wide structure with little ran-
domness, showing strong but fairly unusual correlation patterns indicative of a broken
PRNG design
Advanced Sheep-Count ing St ra tegies 165

Attacking with Attractors

Now, back to the question of sunflowers versus bricks. Yes, the relevance of
the pretty pictures goes beyond visual delight for hard-core computer geeks.
As it turns out, the attractor structure captured for each system creates a
matrix of possible ISN behavior patterns, with densities that correspond to
probabilities of a specific type of time dependency or statistical pattern
appearing over time. Higher-density regions within the attractor correspond
to historical correlations, which are also more likely to occur in the future;
less populated areas are less likely to be visited. As such, once the approx-
imate attractor for a specific system is mapped out, the attacker can guess at
future results. But how, precisely, do those shapes map back to exact ISN
values?

The key to a successful attack is recognizing that the x coordinate of
every point in the attractor depends on the value of Dt—that is, on the
sequence numbers observed at time t and t1 (because Dt = St St1). The y
coordinate, on the other hand, depends on Dt1 (ISNs at t1 and t2), and
z depends on Dt2 (ISNs at t2 and t3).

Let’s assume an attacker has sent three probes to a remote system, for
whose operating system the attractor structure has been mapped. The probes
correspond to times t3, t2, and t1 and—naturally—are sufficient to recon-
struct the y and z coordinates of the point that would mark the behavior of the
system at this particular time on the attractor structure.

The attacker can use this information to deduce values of x for known y
and z that are more likely to occur than others, based on the observation of
the irregularities in the attractor structure noticed thus far. The y and z
coordinates correspond to a single line in the attractor space, perpendicular
to the x plane (as shown in Figure 10-15)—the collection of points with all
possible x values, but known remaining coordinates. The collection of points
at which the line intersects with or nears the high-density areas of the
attractor forms a set of most likely values for the x coordinate. The areas of
lowest density are, obviously, least likely to correspond to the correct value
of x; after all, the attractor points did not show up there during previous
measurements.

The ability to construct a set of candidates for the x value for known y
and z is a major step toward a successful attack: knowing St1 (which, you will
recall, was previously acquired by the attacker), the attacker can easily
calculate St for every candidate x (Dt) value, as follows:

Having sampled three previous sequence numbers, St3, St2, and St1,
the attacker can thus determine a set of likely candidates for the next
sequence number, St, which will likely be chosen for the next connection by
the attacked system—the one the attacker did not initiate, but which he
hopes to interfere with. The attacker can then execute an attack by sending

St x St 1–+=
166 Chapter 10

TCP/IP packets with the candidate sequence numbers; he does not have to
get it right from the beginning because all wrong guesses will simply be
disregarded by the remote implementation. However, as soon as the value of
any of the spoofed packets agrees with the expected number, within the
expected window size, the traffic will be accepted, thereby defeating the
session integrity protection offered by TCP/IP.

Figure 10-15: An “attack line” intersecting the attractor

The attack has some caveats, of course:

 Their observed dynamics might be local to the observation conditions
or source itself—though judging from the achieved success ratio when
this technique is deployed against common implementations, this is
unlikely.

 If the candidate set is particularly large—as with algorithms that produce
uniform attractor clouds with no clear irregularities—the technique
becomes fairly impractical because it requires too many attempts to
make a correct guess.

 Because it is often impractical to sample the entire sequence of values
generated by an ISN implementation in a system (some systems have
long or even unlimited cycles), it is impossible to construct a complete
attractor. To counter this, you must use an approximate approach: the
value is chosen as a candidate if a point is present within a given radius
from a specific point on the (y,z) line, thus compensating for the fact
that even fairly dense areas of the attractor can still contain gaps.
Advanced Sheep-Count ing St ra tegies 167

To keep the results meaningful and to establish a method for compar-
ative assessment of the quality of a ISN generator, I decided to empirically
estimate the success ratio with a limited number of tries. Specifically, I
wanted to determine the likelihood of hitting the correct number given
5,000 attempts, based on the assumption that an attacker using a low- to mid-
end network connection could send at most 5,000 packets in a short period
of time.*

To test the validity of the approach, I chose to estimate the probability
of success by dividing the input data acquired from remote systems into two
parts: one part to construct the attractor and the other to perform actual
tests. The test read four subsequent sequence numbers at once and then
fed three of them to an implementation that, based on the attractor data,
had to then generate a set of as many as 5,000 values. Finally, the output
was compared with the fourth number acquired from the test data set.
The test was repeated hundreds of times for subsequent ISN quadruplets
for every attractor to determine an approximate successful guess percen-
tage, which, in practice, denotes how likely the attacker is to succeed using
this approach.

Following are some of the results for the systems in the attractor gallery:

This approach was obviously fairly effective† and prompted many
vendors to redesign their algorithms or revisit their claims about algorithm
security. (Follow-up research that I published one year later (2002) reviewed
some of these changes, of which not all were satisfactory.)

But the real question is, What does this have to do with passive operating
system fingerprinting?

* The smallest SYN packet has 40 bytes; hence, sending 5,000 SYN packets consumes at least 200
kilobytes of bandwidth. This amount of data can be successfully sent out over a modem line with
V42.bis modem compression in a matter of 10–20 seconds. The choice of this threshold is quite
arbitrary, but seems reasonable.

Operating System Attack Feasibility

IRIX 6.5.15 25% (25 out of 100 attempts)

OpenVMS 7.2 15.00%

Windows NT 4.0 SP3 97.00%

Windows 98 100.00%

FreeBSD 4.2 1%

HP/UX 11 100.00%

Mac OS 9 89.00%

† These results apply to scenarios in which a precise data injection or spoofing is necessary. If less
precision is required or if the only goal of an attacker is to cause a disruption, the remote party
is not only going to accept packets with the exact sequence number, but also those that fit within
the window size, as specified in TCP/IP parameters (see Chapter 9). In other words, DoS attacks
will be even more successful.
168 Chapter 10

Back to System Fingerprinting

Indeed, a couple of truly fascinating consequences result from our ability to
map out the dynamics of a sequence number generator in a particular system
and from the fact that most implementations exhibit certain more or less
unique phase-space patterns. The most obvious trick is the application of ISN
probing to old-school system fingerprinting.

By observing a couple of sequence numbers acquired from a remote
system (for example, when a party attempts to establish several connections
to a server) you can attempt to find an attractor to which this data fits best, by
comparing the observed sample against a library of known attractors. (The
numbers don’t need to be predictable using the attack technique described;
the attractor for a system need only be distinct.)

When compared with traditional, passive fingerprinting, this method
usually provides us with less detailed insight into the system’s configuration,
but it is also nearly foolproof. To thwart the technique, you would have to
modify the way sequence numbers are generated, but it is usually impossible
to significantly tweak ISN-generation settings from the user space, and a
modification of the kernel without degrading security usually requires a
good dose of knowledge and skill (not to mention, access to the sources).

But, is that all? Of course not!

ISNProber—Theory in Action

Pictures and theory aside, it would be good to see how an ISN sampling
works in the real world and how can it help to assess the configuration of a
remote system or identify its instances. Fortunately for me, there is a
program worth mentioning.

After reading my TCP/IP ISN analysis paper, Tom Vandepoel wrote a
great tool called ISNProber. ISNProber uses sequence number analysis to
differentiate among several instances of the same system, based on the
observation that two distinct systems are likely to be at different locations in
the attractor.

At its most trivial, ISNProber can tell that two systems are hiding behind
a shared address, based on the appearance of observed ISNs. For the sake of
simplicity, let’s assume that system Y uses an increase-by-one ISN-generator
design. We approach an IP address of a website www.example.com and want
to determine how many systems there are. We first identify www.example.com
as system Y, establish several subsequent connections, and then observe ISNs
as follows: 10, 11, 534, 13, 540, 19.

It should be obvious that the lower numbers form a sequence originating
from a computer that either handled less traffic or has a lower uptime (10,
11, 13, 19), whereas the higher numbers correspond to the other system.
Hence, two computers are “co-serving” the same public IP, perhaps behind a
load balancer. Furthermore, by varying sampling intervals, we can carefully
examine the type of load balancer, its request distribution policy, and the
traffic it receives.
Advanced Sheep-Count ing St ra tegies 169

This approach can not only differentiate systems hiding behind a
common address, but also track users of system Y as they hop from one
IP to another, for as long as they do not reboot their machine (and
hence reset the ISN counter). For systems that offer ISN-generation
schemes more sophisticated than the one in our example, the distinction
can be more difficult, but it is certainly possible, as long as the ISNs are
not purely random on all 32 bits. (If they are, collision-related concerns
arise.)

The approach used here simply requires that a dose of predictability be
present in the ISN-generation algorithm. As such, TCP/IP initial sequence
analysis seems to be a promising alternative or addition to traditional passive
fingerprinting—and can, quite regrettably, serve as a useful tool for privacy
invasion and user tracking, too.

Preventing Passive Analysis

Defending against sequence-number prediction is fairly trivial, and good
solutions, such as Steven M. Bellovin’s RFC19482 specification, have been
available for a long time. However, preventing passive analysis of the
numbers is quite difficult, because the problem results not only from the
weakness of the algorithms, but also from the diversity of the algorithms
used, which causes few systems to share the same ISN footprint. Even
among systems that implement RFC1948 or that use other cryptograph-
ically secure, external entropy-based generators, behavioral patterns may
vary significantly, depending on the subtleties of the algorithm and the
implementor’s assumptions as to the values that would be sufficient to
thwart an attack.

A degree of prevention can be achieved by deploying a stateful packet
firewall that rewrites all sequence numbers in outgoing packets*; this makes
all systems within a protected network appear roughly the same. Unfor-
tunately, only some offer this functionality, and only some can benefit
from it.

* Solar Designer points out that, technically, this can also be implemented as a clever hack in a
stateless firewall. The firewall may combine (through XOR, for example) the original sequence
number with a secure hash of a secret key, combined with a quadruplet of addresses and ports
that uniquely identify a connection. Returning packets could then have the hash removed (by
subsequent XORing), making the packet match the internal host’s idea of the connection upon
delivery, but existing only in an unpredictable, random 32-bit form while outside the firewall.
This would work for all but the most broken (frequently repeating and collision-prone) ISN
implementations.
170 Chapter 10

Food for Thought

The technique of phase-space analysis is useful in fields that go far beyond
sequence-number generation. Other parameters that are chosen pseudo-
randomly or according to some internal scheme—such as IP packet ID fields,
DNS request identifiers (as shown in Figure 10-16), application-generated
“secret” cookies that identify user sessions, and so on—can be analyzed
successfully, either to find flaws in a design or to identify an implementation
and simplify further analysis or facilitate an attack.

Figure 10-16: An interesting attractor pattern for Linux name-resolver implementation

Some work in this direction had been done or is under way; in a paper
partly related to my original research, Joe Stewart provides insight into some
of the DNS system problems3 that arise with the advancement of sequence
number-prediction mechanisms. He notes that not only a UDP-based DNS
protocol offers request verification methods that are simply not enough to
withstand even “low-budget” spoofing attacks, but also the low quality of
unique request identifiers generated by various implementations further
weaken the scheme to make it trivially vulnerable to malicious data injection.
Given that DNS is one of core services of the Internet, and that the perspec-
tive of spoofing a DNS response for a popular site to redirect all users of a
specific network to a different web page is not exactly not tempting, DNS
poisoning tops my list of downplayed threats on the Internet.

Dan Kaminsky provides some interesting, more advanced visualizations
of supposedly random data at http://www.doxpara.com/pics/
index.php?album=phentropy (Figure 10-17), definitely a worthy read.
Advanced Sheep-Count ing St ra tegies 171

Figure 10-17: Dan’s rendition of BSD kernel randomness (courtesy of www.doxpara.com)
172 Chapter 10

I N R E C O G N I T I O N O F
A N O M A L I E S

Or what can be learned from subtle imperfections of network traffic

In the previous chapters, I dissected and analyzed a
number of ways to extract chunks of potentially and
likely valuable information from seemingly irrelevant,
“technical” parameters supplied along with every
message transmitted by a suspect over the network. As
I hope you have seen, we can obtain a considerable
amount of data on the sender that the sender is surely
unaware of providing (or, at the very least, not very
happy about often being unable to opt out of providing that data). Using a
wide array of packet and stream analysis tricks, in a perfect and happy world we
can measure many characteristics of the remote party and can map their
behavior to a specific system’s signature and network configuration.

However, the reality is a bit different: some of the observed parameters
deviate at least slightly from the expected set of values normally associated with
a specific device or network configuration that the suspect is using. Although
you may simply ignore these seemingly senseless and accidental discrepancies
and still successfully identify the originating system or track its users, it is not

necessarily wise to do so. We learn to pay no attention to seemingly meaningless
annoyances like this, but nothing in the world of computing happens without
a good reason (given a fairly lax definition of “good,” at least), and exploring
the mechanism behind these apparently random anomalies and minority
patterns, rather than ignoring them, can provide valuable information about
the previously unseen specifics of network configuration.

In this chapter I take a closer look at some of the processes that can
affect the observed characteristics of a system. I explain the underlying
reason for, the purpose of (or lack thereof), and the consequences of the
technologies that prompt such behavior.

Needless to say, most of the reproducible modifications to IP packets
discussed here originate from more advanced types of IP-aware intermediate
systems. Therefore, I’ll begin with a consideration of two long-neglected
subjects: firewalls in general, and network address translation (NAT) in
particular.

Firewalls are intended to remain stealthy bastions, and the less that
is known about what the other guy uses, the better for him. Yet, despite
rigorous firewall policies and settings, as these devices increase in com-
plexity and become better suited to handle today’s security challenges,
they also become easier to examine using indirect or passive probe
techniques.

Packet Firewall Basics

Popular firewalls1 are, in essence, a class of intermediate router devices
engineered to violate the fundamental design of an intermediate router
device. As opposed to routers proper, systems that are expected to make
nondiscriminatory routing decisions based on the information encoded on
the third OSI layer, firewalls usually interpret, act upon, or even modify
information on higher layers (such as TCP or even HTTP). Firewall
technology, although fairly recent, provides a well-established and well-
understood set of solutions and can be found in home networks and in large
corporations. Firewalls are configured to reject, allow, or redirect specific
types of traffic addressed to specific services and are (not surprisingly) used
to limit access to certain functions and resources for all traffic traveling
across such a device. Hence, they provide a powerful, albeit sometimes
overhyped and overly relied upon, security and network management
solution.

The key to the success of firewalls in all network environments is
that they protect an array of complex systems using a single and compar-
atively more robust component and provide a fail-safe security measure if
a configuration problem exposes a vulnerable service or function on a
protected server. (In extreme cases, firewalls are used simply to cover for
poor configuration and lack of maintenance of a protected system, usually
with disastrous results.)
174 Chapter 11

Stateless Filtering and Fragmentation

Basic firewalls are stateless packet filters. They simply inspect certain
features of every packet, such as the destination port on Transmission
Control Protocol SYN connection attempts. They then decide, based on
these characteristics alone, whether to allow the packet to go through.
The stateless design is extremely simple, reliable, and memory and resource
efficient. For example, a stateless firewall can limit incoming connections to
a mail server to only those addressed to port 25 (SMTP) by dropping all SYN
packets but those addressed to this port. Because no connection can be
established without this initial SYN packet, the attacker cannot interact with
applications on other ports in a meaningful manner. To achieve this, the
firewall does not have to be nearly as fast and complex as the mail server
itself, because it does not need to keep a record of currently established
connections and their exact state.

The problem with this type of completely transparent protection is that
the firewall and the final recipient might understand some of the parameters
differently. For example, say an attacker convinces the firewall that it is
connecting to an allowed port, but crafts its traffic so that the final recipient
reads it differently and establishes a connection to a port that the firewall is
supposed to be protecting. An attacker can thus access a vulnerable service
or an administrative interface, and we are in trouble.

Although causing such a misunderstanding might sound unlikely, it
turned out to be fairly easy to achieve with the help of our old friend, packet
fragmentation, using an approach commonly referred to as the “overlapping
fragment attack”2 (described in 1995 by RFC1858). In this situation, the
attacker sends an initial packet, containing the beginning of the Transmission
Control Protocol SYN request, to a port that is allowed by the victim’s firewall
(such as the aforementioned port 25). The packet is missing only a tiny bit at
the end and has a “more fragments” flag set in its IP header, but why should
the firewall bother about the trailing data in a packet?

The firewall examines the packet, and because it is a SYN packet, its
destination port is also examined and found acceptable. The packet is passed
through, but the recipient does not interpret it immediately (remember the
reassembly process discussed in Chapter 9?). Instead, the packet is kept,
pending the successful completion of defragmentation, which will not occur
until the last trailing chunk of the packet arrives.

Next, the attacker sends a second packet fragment. This second packet is
created to overlap with the original packet just enough so that it overwrites
the destination port (one of the fields of the TCP header) at its location in
the reassembly buffer. The fragment is crafted so that it starts at a nonzero
offset and lacks most of the TCP header, except for the overwritten bit.

Because of this (and because it lacks the information needed to examine
the flags of a TCP packet or other vital parameters the firewall could use to
determine whether to allow or block this traffic), the second fragment is
usually relayed as is by a stateless firewall. When combined with the first
In Recogni t ion of Anomal ies 175

packet by the recipient, this second packet overwrites the original desti-
nation port to a more naughty value chosen by the attacker and actually
opens a connection to a port that should be protected by the firewall.

Whoops.

NOTE To protect against this attack, a well-designed stateless firewall performs initial defrag-
mentation before analyzing packets. This, however, makes it somewhat less “stateless,”
and less transparent.

Stateless Filtering and Out-of-Sync Traffic

Another problem with stateless packet filters is that they are not nearly as
tight as we might hope. The filtering can only be carried out when a single
packet contains all the information necessary for the filter to make an
informed decision on how to handle it. Because, following the initial
handshake, a TCP connection is largely symmetrical, with both parties
having equal rights and using the same type of traffic (ACK packets) to
exchange data, it is not easy to apply meaningful filters to anything other
than the initial phase of a connection. There is no way to determine who
(if anyone) initiated the connection through which ACK packets are being
swapped without actually tracking and recording connections. Thus, it is a
bit hard to define in a meaningful way the filtering policy that the firewall
should attempt to apply to traffic such as ACK and other midway packets
such as FIN or RST.

The inability to filter past SYN is not normally a problem. After all, if an
attacker cannot deliver the initial SYN packets, they cannot establish a
connection. But there’s a catch: how systems handle non-SYN traffic to a
specific port depends on whether a port is closed or the system is listening on
that port. For example, some operating systems reply with RST to stray FIN
packets and generate no reply on ports that are in open (listening) state.*

Techniques such as a FIN or ACK scan (the latter initially described by
Uriel Maimon3 in Phrack Magazine), as well as NUL and Xmas scans (scans with
illegal packets with no flags set and all flags set, respectively) can thus be used
against stateless packet filters to gather preattack evidence about which ports
are open on a remote system or to map out what traffic is being dropped by
the firewall. The ability to learn that a specific port is open without the ability
to establish a proper connection to it is not an immediate threat by itself.
However, a scan of this nature often discloses extremely valuable information
about network internals (such as the operating system and services being run),
which can be used to facilitate a better, more efficient, and more-difficult-to-
detect attack once the first line of defense is compromised or bypassed. Thus,
this is perceived as a potential weakness of a stateless firewall.

* Some aspects of this behavior (the tendency to reply with RST to stray and unexpected packets
to closed ports and simply disregarding the same traffic addressed to ports on which a service
listens for connections) is mandated by RFC793, and some is just a practice chosen by a specific
group of implementors.
176 Chapter 11

Perhaps a more grave threat is associated with the mechanism of SYN
cookies when combined with stateless filtering. SYN cookies are used to
protect operating systems against resource starvation attacks, in which the
attacker sends a very large number of spoofed connection requests to the
host (not itself a difficult operation to perform). This forces the recipient to
send bogus SYN+ACK replies, and additionally to allocate memory and
consume other resources when adding this connection-to-be to its TCP state
tables. Most systems under such an attack would either consume excess
resources and slow to a crawl or deny service to all clients at some point until
those bogus connections time out.

To deal with this potential problem, SYN cookies use a cryptographical
signature (a shortcut, actually, identifying the connection uniquely) in all
SYN+ACK responses inside the ISN field, and then forget about the connec-
tion altogether. Only once the ACK response arrives from the host, and
only if the acknowledgement number validates against the cryptographic
procedure, will the connection be added to the state table.

The problem with SYN cookies, however, is that, in such a design, there
is the possibility that SYN (and SYN+ACK response) was never sent in the first
place. If the attacker can create an ISN cookie that validates against the
host’s SYN cookie algorithm (perhaps because the attacker has enough
bandwidth, or because the algorithm is weak), he can send an ACK packet
that would trigger the remote host to add a new connection to its state table
despite, as mentioned, not ever sending SYN and receiving SYN+ACK. A
stateless firewall would have no way of knowing that a connection has just
been established, because it never received the opening request in the first
place! Because there is no initial SYN packet, the destination IP and port
could not be checked by the firewall and either approved or rejected, and
yet, a connection is all of a sudden established.

That’s really bad.

Stateful Packet Filters

To solve the problems of stateless filters, we need to store some of the infor-
mation about previous traffic and the state of established streams on the
firewall. This is the only way to transparently predict the outcome of defrag-
mentation or to obtain the context for midconnection packets and decide
whether they are illegitimate and should be discarded or are expected by the
recipient and should be delivered.

With the increase of affordable high-performance computing, it has
become possible to devise firewall systems that are much more complex and
advanced than we could ever imagine. Thus, we have progressed to stateful
connection tracking, a situation in which the firewall not only examines
single packets, but remembers the context of a connection and validates
every packet against this data. This allows the firewall to seal the network
tightly and to disregard undesirable or unexpected traffic without relying on
the recipient’s ability to always tell good traffic from bad. Stateful packet
In Recogni t ion of Anomal ies 177

filters try to track connections and allow only the traffic that belongs to one
of the active sessions; as a result, they provide better protection and logging
capabilities.

The task of stateful filtering is, of course, more challenging than
stateless filtering and consumes considerably more resources, especially
when a sizable network is protected by such a device. When protecting a
large network, the firewall suddenly requires plenty of memory and a fast
processor to store and look up the information about what is happening
on the wire.

Stateful analysis is also more likely to cause problems or confusion. Issues
ensue as soon as the understanding of the current state of a given TCP/IP
session differs between the firewall and the endpoints; a situation that is not
unlikely given the ambiguity of specifications and the variety of stacks used. For
example, upon receiving an RST packet that is not within sequence number
limits accepted by the recipient, a firewall that applies sequence number
inspection less stringently than the final recipient does might conclude that a
connection is closed, whereas the recipient might conclude the session is still
open and be willing to accept further communications pertaining to this
connection, and vice versa. In the end, stateful inspection comes at a price.

Packet Rewriting and NAT

The solution to improving packet interpretation, and to providing better
protection against attacks such as those that use packet fragmentation to
bypass firewall rules, was to give firewalls the ability to not only forward, but
also rewrite portions of the traffic transmitted. For example, one approach
attempts to resolve ambiguity by performing a mandatory packet defrag-
mentation (reassembly) before comparing the packet against any access
rules configured by the network administrator.

With the development of more sophisticated solutions, it became
obvious that packet rewriting would not only benefit the network, but also
provide a quantum leap for network security and functionality by deploying
extremely useful technologies such as NAT. NAT is the practice of mapping
certain IP addresses to a different set of IPs prior to forwarding them and
demangling the responses sent back by a protected system. A stateful NAT
mechanism can be used, among other applications, to implement fault-
tolerant setups in which a single, publicly accessible IP address is served by
more than one internal server. Or to save address space and improve
security, NAT can be implemented to allow the internal network to use a
pool of private, not publicly accessible, addresses, while enabling hosts on
the network to communicate with the Internet by “masquerading” as a single
public IP machine.

In the first scenario, NAT rewrites destination addresses on incoming
packets to a number of private systems behind the firewall. This provides a
fault-tolerant load-balancing setup, in which subsequent requests to a
popular website (http://www.microsoft.com, perhaps) or other critical
178 Chapter 11

service can be distributed among an array of systems, and if any one fails,
other systems can take over. The task is sometimes achieved with dedicated
devices (not surprisingly called load balancers), but often also supported by
NAT-enabled firewalls.

The latter scenario, commonly referred to as masquerading, relies on
rewriting source addresses on outgoing packets so that a number of private,
protected systems (that might be using private addresses not routed to this
network from the Internet, such as 10.0.0.0) can connect to the external
world by having their outgoing connections intercepted and rewritten by the
firewall. The systems are hidden behind a firewall, and their actions appear
to recipients outside the NAT-protected network as originating from the
firewall. The connection is mapped to a specific public IP address and a
specific port, and then the traffic is pushed out. All traffic returning from the
destination to this IP and port is rewritten to point back to the private system
that initiated the connection and forwarded to the internal network. This
allows the entire private network of workstations that are not intended to
offer any services to the Internet to remain not directly reachable from the
external world, thus greatly increasing the network’s security, concealing
some of its structure, and preserving expensive public IP address space that
would otherwise have to be purchased to accommodate every system. Using
this system, a party that has only one public IP routed to them can still
construct a network of hundreds or thousands of computers and provide
them with Internet access.

Lost in Translation

Once again, address translation is more complex than it might sound: some
higher-level protocols are not as straightforward as just connecting to a
remote system and sending a bunch of commands. For example, the ancient
but wildly popular File Transfer Protocol4 (FTP), in its most basic and most
widely supported mode, relies on establishing a return (reverse direction)
connection from the server back to the client for the purpose of transferring
the requested data; the initial connection initiated by the client is used only
to issue commands. Many other protocols—most notably some chat pro-
tocols, peer-to-peer collaboration or data-sharing tools, media broadcast
services, and so forth—also use weird or unusual designs that call for reverse
connections and port hopping or allowing specific session-less traffic (such
as User Datagram Protocol [UDP] packets) back to the workstation.

To address these challenges, every implementation of masquerading
that does not aim to render these protocols useless must be equipped with a
number of protocol helpers. These protocols inspect the application data
exchanged within a connection, even sometimes rewriting some of it and
opening temporary holes in the firewall to allow for a return connection.

And herein lies another problem, first spotted in FTP helper by Mikael
Olsson several years ago5 and later researched in other protocol helpers by,
among others, the author of this book.6 The problem is that these helpers
In Recogni t ion of Anomal ies 179

decide to open holes in the firewall based on the information sent by a
workstation over a specific protocol to a remote system. They assume that the
traffic generated by the system is being transmitted on the user’s behalf and
with the user’s knowledge. Needless to say, some programs, such as web
browsers, can be tricked into sending certain types of network traffic,
including traffic that “looks like” a protocol the program does not natively
support, and can even be forced to do so automatically by crafting specific
malicious content and sending it to the application. This spoofed traffic can
fool a helper program into poking a hole in the firewall.

A classic example of such an attack is an abuse of a generic web
browser: by adding a reference to a web page or a web element supposedly
located on an attacker’s system on a nonstandard HTTP port (which is,
however, quite standard for FTP traffic), the client can be forced to
connect to this resource and attempt to issue an HTTP request. Because
the port to which the connection is established is normally used by FTP,
the firewall’s FTP helper starts listening to the conversation, hoping to
give a hand when necessary.

The following example URL would cause the HTTP client to connect to
the FTP port and issue what appears to be an FTP PORT command, which
would be picked up by the firewall helper:

HTTP://SERVER:21/FOO<RETURN>PORT MY_IP,122,105<RETURN>

The request issued by the client would be just meaningless gibberish to a
legitimate FTP service on the other end, and the service’s response would be
incomprehensible to the web client issuing this request—but that’s not the
point. What matters is that the attacker can control a part of the request—
the file name the client will request from the server. This fictitious file name,
chosen by the rogue, can contain any data the rogue wishes. By making the
file name contain substrings normally identified with FTP requests, the
attacker can trick an FTP protocol helper that is listening to this connection
for a specific text command (PORT) into believing that the user is attempting
to download a specific file. Hence, the remote server is temporarily allowed
to connect to the victim (here, to a naughty sounding port 31337—
122*256+105=31337). And so we let the attacker in without the victim
knowing. Oops—again, more than we bargained for.

The Consequences of Masquerading

All of the aforementioned scenarios are related to masquerading abuse, but
the mere presence of masquerading itself can provide us with interesting
information about another party.

As noted earlier, masquerading is not nonintrusive. Its basic operating
principle is to alter the outgoing traffic by rewriting portions of it. In so
doing, it goes beyond merely tweaking the address and not only makes it
180 Chapter 11

possible to conclude that masquerading is taking place, but also enables a
careful observer to identify the particular firewall system in use. Specifically,
when using masquerading, we may encounter some of the following changes:

 There will be an observed discrepancy between the TTL on arriving
packets and the expected or measured distance to the destination net-
work. Traffic that originated behind a masquerade is at least one hop
“older” than a packet originating from a system that gets its IP address
for outgoing connections directly from a protected network.

 In most cases, various operating systems or slightly different system con-
figurations (or uptimes) can be found in the originating network. These
systems have slightly different TCP/IP characteristics, as discussed in
Chapters 9 and 10. If we observe various TCP/IP fingerprints in connec-
tions seemingly originating from the same IP, we can get a strong hint as
to whether NAT is present at a particular machine with an internal net-
work behind it.

 Finally, a remote observer is likely to notice source port shift. This is an
otherwise unusual occurrence that arises because connections coming
from the network are using ephemeral source ports that are not in the
particular operating system’s normal range.

Every operating system reserves a specific range of source ports for
establishing a local endpoint identifier for all outgoing connections.
However, a firewall often uses a different range of ports for mapping
masqueraded connections that is specific to the NAT device’s operating
system. In this case, if the observed ranges differ from what is expected
for the detected operating system (for example, if Linux, which normally
operates in the range of 1024 to 4999, appears to be using very high port
numbers instead), it is possible to deduce the presence of address trans-
lation and sometimes even determine the type of firewall in use.

These techniques are commonly used and form the basis for
masquerade detection and masqueraded network reconnaissance. But
several other means of detecting packet rewriting are also available.

Segment Size Roulette

One of the less obvious and hence less popular ways to detect packet
rewriting devices and learn more about network configuration is analyzing
the maximum segment size field in incoming traffic.

Because IP packet fragmentation adds noticeable overhead to the
fragmented traffic, it is often perceived as a performance nightmare, and
many implementers try to prevent it. On the other hand, as discussed earlier,
fragmentation is difficult to eliminate, as it seems to be nearly impossible to
accurately, quickly, and reliably determine the maximum transmission unit
(MTU) over a path in advance of actual communications. Even the best
method available, path MTU discovery, is far from perfect and still impacts
In Recogni t ion of Anomal ies 181

performance when triggered. In order for it to detect the correct MTU
setting by trial and error, some packets that do not fit might have to be
discarded and be resent.

To prevent the performance and reliability impact of path MTU discovery
and reduce the overhead of fragmentation, many NAT firewalls that rewrite
certain parameters of outgoing traffic also change the declared Maximum
Segment Size (MSS) parameter in TCP headers on connections originating
from the private network to one more suitable for the external link from the
network. This new setting is likely to be slightly narrower (have a lower
MTU) than that of the LAN. This modification ensures that the receiving
party does not attempt to send data that would not fit over the link if that
link is across the particular part of the infrastructure with the lowest MTU,
thus making fragmentation less likely to occur. (This assumes that any MTU
incompatibility is most likely to occur near the sender or recipient system on
the so-called last mile, where various types of low MTU links, such as DSL
connections or wireless lines, are often found, and packets might need to be
“downsized” to fit through those pipes.)

This reduction in the MSS alone is not particularly easy to detect. In fact,
it is impossible to tell whether the MSS was set to a given value by the sender
or modified somewhere down the road. That is, except for one minor thing.
Recall from Chapter 9 that there is something special about the window size
selection algorithm on many of today’s systems:

The window size setting determines the amount of data that
can be sent without acknowledgment. The specific setting is
often chosen according to the developer’s personal voodoo
rules and other religious beliefs. The two most popular
approaches say the value should be either a multiple of the
MTU minus protocol headers (a value referred to as
Maximum Segment Size, or MSS) or simply something
sufficiently high and “round.” Older versions of Linux (2.0)
used values that were powers of 2 (for example, 16,384).
Linux 2.2 switched to a multiple of MSS (11 or 22 times
MSS, for some reason), and newer versions of Linux
commonly use 2 to 4 times MSS. The Sega Dreamcast, a
network-enabled console, uses a value of 4,096, and
Windows often uses 6,4512.

An ever-increasing number of today’s systems (including newer versions
of Linux and Solaris, certain versions of Windows, and SCO UnixWare) uses
a window size setting that is a multiple of the MSS. Thus, it’s easy to tell when
the MSS setting in a packet has been tampered with because the window size
on the resulting packet will no longer be a specific multiple of MSS. In fact,
it’s likely that it will no longer divide by MSS at all.

By comparing the MSS to window size, you can reliably detect the
presence of a group of firewalls that support MSS clamping (readjusting to
match the link) on a variety of systems. Although clamping is optional on
182 Chapter 11

Linux and FreeBSD, it is often performed automatically on home firewalls
and on smart DSL routers or other home networks. Hence, the presence of
an anomalous MSS setting indicates not only a packet-rewriting device, but
an association also with NAT capability, which can be taken as an indicator of
the sender’s network connection.

Stateful Tracking and Unexpected Responses

Another important consequence of stateful connection tracking and packet
rewriting is that some RFC-mandated responses are generated by the firewall,
not the sender. This enables an attacker to discover and probe such a device
quite efficiently. When a connection is dropped from the NAT state table
(whether due to a time-out or to a termination by one of the endpoints with an
RST packet that did not reach the other end), further traffic in this session will
not be forwarded to the recipient, as it would with stateless packet filters. It is
handled directly by the firewall, instead.

The TCP/IP specification mandates that a recipient reply to all
unexpected ACK packets with RST, to inform the sender that the session
they are attempting to continue is no longer honored by the recipient or
never was. Some firewalls might violate the RFC and refuse to reply to this
traffic at all, simply dropping packets that do not seem to belong to an
existing session. (This is not always wise, because it can cause unnecessary
delays when a legitimate connection is dropped due to intermittent network
problems.)

Numerous devices, however, reply with a legitimate and expected RST
packet. This opens yet another avenue for the detection and careful finger-
printing of the firewall device. Because the packet is created from scratch by
the firewall, its parameters relate to the firewall, not to what the firewall is
protecting. This allows the traditional fingerprinting techniques discussed in
Chapter 9 (such as examining DF flags, TTL, window size, option types,
values and ordering, and so on) to be used to identify the firewall.

There is also another possibility, per RFC1122:7

4.2.2.12 RST Segment: RFC-793 Section 3.4

A TCP SHOULD allow a received RST segment to include
data.

DISCUSSION: It has been suggested that an RST segment
could contain ASCII text that encoded and explained the
cause of the RST. No standard has yet been established for
such data.

And indeed, even though no standard had been established, some
systems choose to reply with verbose (albeit often cryptic) RST messages
upon encountering a stray ACK, hoping that the other party will find
comfort in knowing what went wrong. These replies often include internal
keywords or, it would seem, attempts at some strange genre of geek humor
In Recogni t ion of Anomal ies 183

that may be operating system specific, such as no tcp, reset; tcp_close, during
connect (Mac OS); tcp_fin_wait_2_timeout; No TCP (HP/UX); new data when
detached; tcp_lift_anchor, can't wait (SunOS).

Whenever we see such a verbose RST packet in response to network
problems or unexpected traffic sent to the host, and we otherwise know
that the remote system from which it originated does not use such verbose
messages, we get a hint. We can deduce that there is a device between us
and the recipient, likely a stateful firewall, and we can tell its operating
system by matching the response against known messages produced by
common and not-so-common operating systems.

These two fingerprinting techniques prove to be extremely effective in
detecting the presence of stateful packet filters whenever network traffic can
be observed during short-term network problems. These techniques can also
be used for active fingerprinting without targeting the firewall device itself by
sending a stray ACK packet to a target to differentiate stateless and stateful
filters. Based on the target’s response to the packet, the attacker can then
devise the best method to approach the firewall (or use the knowledge
gained in other ways).

Reliability or Performance: The DF Bit Controversy

Path MTU discovery (PMTUD) is a fingerprinting venue that is closely
related to the IP fragmentation avoidance scheme described in Chapter 9.

Recent versions of the Linux kernel (2.2, 2.4, 2.6) and of Windows (2000
and XP) implement and enable PMTUD by default. Thus, unless this setting
is changed, all traffic originating from them has a don’t fragment (DF) bit
set. Again, the path discovery algorithm tends to cause issues in some rare
but not entirely unheard of situations.

Path MTU Discovery Failure Scenarios

The problem with PMTUD is that it depends on the ability for the sender of
a packet to receive the ICMP error message “fragmentation required but DF
set” and to determine the optimal settings for a connection. The packet that
triggered the message is discarded before reaching the destination and has
to be resized and sent again.

If the sender does not receive this message, they remain unaware that
their packet did not get through. This prompts a delay at best or an indef-
inite lockup of the connection at worst, since retransmissions are also not
likely to get through a link for which the maximum allowed size of a packet is
smaller than what the sender is trying to push through.

The ICMP message generated when a packet is too large for a link
is not guaranteed to reach the sender, however. In some networks, as a
result of an ill-conceived attempt to improve security, all ICMP messages
are simply dropped. Finally, even if a device sends one, it might not be
delivered.
184 Chapter 11

Why would ICMP messages be dropped? Because historically, many such
messages were known to cause security problems: certain oversized or
fragmented ICMP packets corrupted the kernel memory in many systems
(also called the “ping of death”). ICMP messages sent to broadcast addresses
were also used to trigger a storm of responses to a spoofed source address in
an attack named “Smurf,” as well as to carry out DoS attacks. Too, incorrectly
configured systems often interpreted a specific type of ICMP broadcasts, a
router advertisement message,* as a command to modify their network
settings. Because they would accept it, regardless of whether those messages
could be trusted, this opened yet another interesting attack route. And so,
ICMP is feared and blocked by many.

NOTE A suggestion to reject all ICMP traffic can often be found in naive security guides, and
some system administrators follow it. I have even seen it in a professional pen-test rec-
ommendation from an acclaimed auditor, whose name I regrettably cannot reveal here.

Another issue that can make PMTUD unreliable is that some received
error messages come from devices that use private address space. Sometimes,
in order to preserve limited public IP address space (which is usually
expensive), interfaces on the cable that connect the router and the firewall
of a remote network are chosen from a pool of addresses reserved for
private, local use, instead of from ones actually routed to the particular
network from the outside world.

Unfortunately, the use of private address space can break PMTUD. Why?
Because if a packet coming from the external world is too big to be forwarded
by the recipient’s firewall to the destination, the firewall sends an ICMP error
message with a source address of the firewall itself, which belongs to the private
pool. The firewall of the sender of the original packet can then reject such a
response packet, because it appears to come from the external world, but
with an IP address from a private pool (perhaps even from the same pool as
the sender’s private LAN). The firewall rejects this traffic because it is usually
a sign of a spoofing attempt intended to impersonate a trusted, internal host.
However, in this case, this decision breaks a relatively recent PMTU discovery
mechanism and leaves the original sender unaware that their packet did not
get through.

To make things worse, even if all conditions are right, and the packet
reaches its destination, many of today’s devices limit ICMP response rates
and will not send more than a given number of messages during a particular
time period. This, too, has been implemented as a security measure. Because
ICMP messages were designed for informational purposes only and were not
critical to communication before the introduction of PMTUD algorithms,
rate limiting seemed like a sensible way to fend off certain types of DoS or
bandwidth starvation attacks.

* Router advertisements were intended to allow the autoconfiguration of network hosts
without the need to enter any settings by hand. The router periodically—or on request—
broadcast a message saying, “Here I am. Use me.” By default, some systems accepted
unsolicited advertisements without much hesitation—a bad idea.
In Recogni t ion of Anomal ies 185

The Fight against PMTUD, and Its Fallout

In light of the foregoing, some regard PMTUD as a fairly bad design. It offers
a slight performance improvement but at the price of infrequent but
persistent and usually hard-to-diagnose problems that can prevent users from
accessing specific servers or cause their connections to stall unexpectedly.
Although many “black-hole detection” algorithms were devised to detect
hosts or networks for which PMTUD should be disabled (and these work
with varying success), this does not fully solve the problem and can introduce
additional delays—usually when least desirable.

To solve these problems and avoid complaints, some commercial firewall
vendors configure their solutions to perform a dirty trick: They clear the DF
flag on all outgoing traffic. This is a subtle and often appreciated modifi-
cation, but it is also a great way to identify the presence of a packet-filtering
and rewriting device. If the characteristics of PMTUD-enabled systems are
observed at a given address or a given network, but the incoming packets
lack a DF flag as expected, the careful observer can deduce the presence and
type of a firewall, thus obtaining another tiny bit of data without any
interaction with the victim.

Food for Thought

This concludes my little story about how making firewalls better and more
powerful to prevent infiltration and direct reconnaissance also made them
easier to examine with indirect assessment. But allow me this brief
digression.

Perhaps the most bizarre and interesting discovery is one I encountered
somewhere back in 1999. Although not directly related to the design of
firewalls, it still provides interesting food for thought for anyone interested
in the problem of passively fingerprinting interim systems.

Jacek P. Szymanski, with whom I worked briefly and with whom I later
had the pleasure of discussing certain unusual and suspicious network traffic
patterns,* noted a sudden increase in badly broken TCP/IP packets coming
to port 21536 (and, to a lesser extent, to ports such as 18477 or 19535). The
broken packets always originated from ports such as 18245, 21331, or 17736
and came from a large number of systems in the dial-up address space
operated by Poland’s national telco, Telekomunikacja Polska.

Once a couple of those packets were captured, the traffic was badly and
strangely mangled. The packets arrived with IP headers in place (with
protocol type set to TCP), but the headers were immediately followed with
TCP payload—the TCP headers were simply gone. The observed port
combinations resulted from interpreting the first four bytes of the payload as
a pair of numbers (which, had there been a TCP header there instead, would

* A cooperation that, at some point, resulted in the creation of a loosely knit group of Polish
researchers who worked through 1999 and 2000 to correlate, track, and seek to explain many
bizarre types of unexpected traffic patterns across the network.
186 Chapter 11

correspond to the source and destination port combination). The pair 18245
and 21536 was merely a representation of the text string “GET ”—four
characters that open most HTTP requests transferred over the network.
Similarly, 18477 and 21331 stood for SSH-, an opening phrase of every
Secure Shell session. And 19535 and 17736 represented EHLO, a command
that opens all ESMTP (Extended SMTP) sessions.

But the reason this type of traffic suddenly began to appear remained a
mystery. Too, why did it come only from this particular network? And why
did this type of packet mangling not result in connectivity problems or
other inconvenience for the users, if some network equipment did indeed
produce it?

The answer soon followed. As it turned out, all the observed traffic
originated from Nortel CVX devices, a modem access system that this telco
had begun to use. The problem occurred only sporadically, under heavy
load. Consequently, only a small percentage of incomplete packets were sent,
and only this small number reached the recipients (to their utmost surprise).
The most likely reason was improper queue locking or buffer management, a
problem that could be noticed only when numerous sessions were processed
nearly simultaneously. In such cases, certain packets seemed to be sent out
too early, while still “under construction,” or were otherwise mangled by the
implementation.

The company fixed their TCP/IP implementation shortly after the
deployment in Poland, and all lived happily ever after. But, as you can
imagine, they were not the first and not the last to accidentally leave a unique
footprint of their systems in packets they trafficked.

The moral of this story is that it is once again naive to disregard what we
typically ignore. In today’s networking world subtle hints and unusual or
unexpected and unexplained observations are extremely valuable. They are
easy to find, but difficult to analyze.

Perhaps food for thought and a field worth further exploration are the
various methods deployed to thwart system fingerprinting. Various firewall
vendors have attempted to incorporate antifingerprinting measures that
alter some packet characteristics by tweaking various TCP/IP parameters
(such as Internet Protocol IDs, TCP sequence numbers, and so on). Needless
to say, such a solution actually helps the attacker and produces an outcome
precisely opposite to what they hoped for: unless all characteristics susceptible
to fingerprinting are changed and homogenized (including sequence num-
bers, retransmission timings, time-stamp values, and so on), it is not only
possible to detect the underlying operating system, but also the firewall being
used to protect the network.

C’est la vie.
In Recogni t ion of Anomal ies 187

S T A C K D A T A L E A K S
Yet another short story on where to find what we did not

intend to send out at all

Sometimes, all it takes to find subtle but fascinating
and helpful hints about your co-Netizens and their
whereabouts is some luck. At least that was the case
with a fairly interesting and extremely elusive
information disclosure vector that I discovered in
2003, after several weeks of a daunting hunt.

Kristjan’s Server

First things first. Several years ago, I asked a friend of mine, Kristjan, to let
me use some disk space on one of his machines so that I could host a bunch
of my projects on a reliable and fast system. He agreed, and soon after, I
began to gradually move most of my programs and papers to their new
home. Among the projects I transferred was a new version of p0f, my passive
operating system fingerprinting tool (which you may remember from
Chapter 9). This humble tool implemented some interesting passive analysis
techniques, but to be truly powerful, it needed to ship with a strong and
current database of operating system signatures. Maintaining it manually was
difficult, and I soon ran out of obscure systems to fingerprint and add to it.

Fortunately, whereas gathering signatures for active fingerprinting
software required often objectionable interaction with the target (stirring
controversy and straining the network link and sometimes crashing partic-
ularly poorly implemented TCP/IP stacks), passive fingerprinting required
no such action and could be performed effortlessly on all systems that
connected to Kristjan’s system to fetch my page. To encourage submissions,
I set up a subpage where any user could immediately see their fingerprint
and correct the way their system was being reported or add a new signature.
This page proved to be a great way to collect signatures and improve the
software, but this is not where the story ends.

In a bizarre turn of events, Kristjan decided to host a different, for-profit
site on his system so that his system could pay its own bills. The site, as you
might imagine, was not at all devoted to network security, gardening, or
some other noble cause. Rather, it focused on some less prestigious, yet
perhaps more appealing aspects of our lives: sex, nudity, and everything
related. I rejoiced, as any self-respecting geek would, not because of the
contents he served, but because millions of connection signatures started
pouring down in a matter of hours, to be analyzed by the software I was
developing. Hallelujah!

Surprising Findings

Better safe than sorry: While designing the new code for p0f, I decided to
implement a number of sanity checks to detect even the most bizarre,
unlikely, or unheard of patterns in incoming traffic, covering all possible
illegal or meaningless combinations of TCP/IP settings. Although common
sense suggested I should never encounter packets that have their parameters
mangled in bizarre ways (at least not when communicating with popular and
thus well-tested systems), there seemed to be no harm in implementing this
functionality. Too, if a system indeed turned out to be sending packets that
exhibited a particular type of anomaly, the ability to detect it would provide
an excellent way to tell this particular OS from similar-looking implemen-
tations that do not share this flaw.

During the merry months of this blessed signature storm, I saw the
strangest things. I eventually managed to explain some of these and docu-
ment them for p0f, and some remained a mystery. Most of the anomaly
checks I implemented previously hit the spot, and I immediately located
systems that indeed were sharing more unusual TCP/IP implementation
quirks. But one thing was particularly disturbing and hard to believe, so I
decided to pay more attention to it.

Two of the tests—one a check for the ACK value set in TCP/IP headers
when the ACK flag is not set (indeed a futile action), and the other a test for the
URG value set when the URG flag is not set—seemed relatively meaningless at
first, never yielding interesting results, until I noticed something quite unusual.
I found that some Windows 2000 and XP systems that connected to Kristjan’s
server had, from time to time, nonzero URG or ACK values in packets that had
neither flag set (most notably, SYN packets that open a new connection).
190 Chapter 12

Having URG or ACK values set when a respective flag is not set is not
strictly a problem. According to RFC793, when this is the case, the values
simply lose all significance; for example:

Urgent Pointer: 16 bits

This field communicates the current value of the urgent
pointer as a positive offset from the sequence number in this
segment. The urgent pointer points to the sequence number
of the octet following the urgent data. This field is only be
interpreted in segments with the URG control bit set.

RFC793, in its very special way, tells us that this anomaly is not likely to
cause any networking problems, and as such it might have gone unnoticed
forever. But I took notice, simply because it was kind of odd.

I initially thought that a specific piece of network equipment was to
blame, as was the case with most of the problems described in Chapter 11,
but this was not so. The hits were coming from single systems, not entire
networks, and they were not persistent; they just showed up in a couple of
packets (with values either still or changing randomly) and then disappeared,
never to show up again on subsequent connections. Also, the problem
seemed to be exclusive to Windows; there were no minority operating
systems represented at all in the group of systems exhibiting this issue.

I found myself spending week after week trying to trace the problem. As
part of my hunt, I deployed some other installations in more controlled
environments; and, to my amazement, the problem showed up, even in local
networks and even from the most up-to-date systems, though only for short
periods of time. Users could not recall doing anything unusual when this
type of traffic occurred from their systems, and I could not track down any
particular type of communications or set of actions that would trigger it;
there seemed to be no pattern.

Puzzling.

Revelation: Phenomenon Reproduced

I was close to giving up. I posted my observations to several public mailing lists
(most notably VULN-DEV, a popular vulnerability discussion list hosted by
Security Focus), seeking further analysis and feedback from other researchers,
but this failed to yield any results. And then, only by sheer luck, I caught one
of my own test stations generating this exact behavioral pattern while working
on a wholly different problem. I happened to have a sniffer running in the
background (don’t we all).

Soon, I had a diagnosis: the problem occurred when the workstation was
performing a background file transfer or other network-extensive operations
when attempting to establish a connection. In almost every OS, the packet
to be sent out on a wire was first constructed in the system’s main memory,
using either a static buffer (a fixed location in memory used exclusively for this
purpose) or a dynamic buffer (one allocated as needed using memory that could
Stack Data Leaks 191

have been used previously for some other purpose). In this particular scenario,
when two connections occur at roughly the same time, the buffer used to con-
struct outgoing packets before sending them to the network card appeared to
not be initialized properly prior to use; that is, it was not cleared of any leftover
contents because the buffer was last used for a different purpose. The imple-
mentation code assumes that all contents of the buffer are zero and does not
bother to touch those it does not need to initialize to any particular value (as is
the case with ACK and URG values when respective flags are not set). As a
result, some of the leftover contents are sent out on the wire.

Naturally, all other IP and TCP fields were properly initialized, as they
ought to be; only URG and ACK were left out, as they had no relevance in
this particular context. But this omission meant that a small portion of data
that belonged to a different connection (or a different aspect of computer
operations) was being sent out to another party. The problem manifested
itself only during multiple sessions (common during web browsing, back-
ground downloads, and similar scenarios), but not when the system was idle.

The relevance of the information disclosed in this situation is twofold:

 It can be viewed as a traditional information disclosure scenario.
Although the amount of information disclosed in every packet that does
not have URG and ACK values initialized properly is fairly small and is
not guaranteed to be meaningful (unless the buffer held something
interesting to begin with), it may be of value in certain scenarios, particu-
larly when a simultaneous session that can contain sensitive information,
and effectively the bug itself, can be induced by an external entity.

 The vulnerability can be considered a convenient fingerprinting metric
that reveals additional information about the operating system and the
state it is in—a simple way to differentiate systems that extensively use
the network from idle ones.

That’s it. And although the significance of this discovery is perhaps easy
to overestimate, I decided to include it here for its amusement value and to
illustrate how easy it is to obtain even sophisticated data from a remote party
without even asking.

Food for Thought

It is easy to lay blame for this on the developers. Although the developers are
naturally at fault for not initializing memory properly, the entire notion of
having a separate “enabler” for a field in the header is perhaps a design flaw
in TCP itself and might contribute to this kind of problem. Similar subtleties
plague protocol specifications, as demonstrated in Chapter 7, in which a
similar type of a vulnerability was caused by following a specification too
closely, without giving much thought to its potential side effects.
192 Chapter 12

S M O K E A N D M I R R O R S
Or how to disappear with grace

Many of the information disclosure scenarios discussed
so far require careful analysis of the information sent
by a remote system in order to deduce certain facts
about the sender or to intercept additional data they
are not aware of sending in the first place. In several
cases, however, only circumstantial evidence of the
presence of some form of activity can be gathered. As discussed in Chapters 1
and 2, by precisely interpreting this evidence, you can determine the prob-
able whereabouts of the user or an application that processes sensitive data,
thus indirectly uncovering secrets of the victim’s machine without having to
access the data itself.

Some features of the IP make many of its implementations susceptible
to circumstantial evidence information disclosure vulnerabilities, quite
similar to what we witnessed earlier with certain types of system pseudo-
random number generators or variable complexity data-processing
algorithms. Carefully observing and then deciphering this information
can be advantageous, providing us at the very least with much-needed
intelligence regarding our adversary’s general habits or a particular activity
in which they are engaged.

Until now, this part of the book has focused on IP-layer attacks that
require direct observation of the traffic coming from a sender, though
typically without interacting with the victim. In this chapter, however, we take
a peek at a spectacularly active but indirect IP-based attack in which an
attacker profiles their victim by making an educated guess about what they
cannot see. They do so by interacting with an innocent bystander who is not
the real subject of the test and without this party’s consent or knowledge,
learning what they can about the actual victim.

Such an approach does not sound like the easy way to gather data. So, in
the spirit of a geekdom, why not take the scenic, albeit a bit longer, route and
look at it in more detail?

Abusing IP: Advanced Port Scanning

Rogue Internet users frequently use port scanning for pre-attack reconnais-
sance and system fingerprinting. When port scanning, a would-be attacker
attempts a short connection to every port on a system and maps out all
programs that listen for network traffic. In this way, they can determine
where to attack by finding any vulnerable or otherwise potentially interesting
network service on the system. Too, in many cases, they can determine which
operating system their victim is using, because default services are often
operating-system specific.

The first problem with traditional scanning is that it is quite noisy—the
victim is likely to notice a storm or even a steady flow of connection attempts
to unusual ports. Hiding is not easy, either; the attacker must be able to see
the responses to their SYN packets to determine whether a port is open or
closed. Open ports respond with SYN+ACK, closed ones with RST, and ports
filtered by a firewall are likely to generate no response or an Internet Control
Message Protocol (ICMP) message. Consequently, the attacker cannot
simply spoof a source address on all outgoing packets; they must reveal their
identity by providing source addresses that route back to the network they
are listening on for incoming traffic.

Tree in the Forest: Hiding Yourself

Whether the party scans out of curiosity (for example, to see what operating
system a competitor is running) or follows with an attack attempt, they
usually want to leave as few traces as possible and avoid alerting the victim.
Network administrators and certain authorities generally perceive host and
network scans quite negatively. Although debate is ongoing about whether
these scans should be considered malicious, the person doing the probing
almost always loses when an annoyed systems administrator decides to file an
abuse report or if your competitor identifies one of your employees as trying
to probe their networks, regardless of the true intent and further plans of the
curious tester.
194 Chapter 13

One common way to camouflage port scans is to deploy a “decoy” scan,
whereby the attacker sends SYN packets from a number of fake addresses, as
well as from their actual IP, to each port. The victim handles these bogus
packets just like real ones, except that the responses to bogus ones, of course,
are sent out into the void. As a result, the victim has a much more difficult
time determining who really is behind the scan, because to do so they have to
eliminate all the decoy systems from the list of packet sources through either
careful analysis or simple trial and error. Still, with some determination it is
possible to locate the sender without help from the authorities, though the
attacker hopes to discourage the victim by making it too time-consuming to
fully resolve such a minor incident.

Idle Scanning

The ultimate defense against being discovered came—as it often does—
from a guy who had too much time on his hands and wasted it reading
through protocol specifications instead of doing something productive.
And so a technique called “idle” scanning was born. Initially devised by
Salvatore “antirez” Sanfilippo in 1998, it was soon widely implemented
and became quite popular among hackers (both the simply curious and
the malicious).1

Idle scanning is based on an important observation. To quote RFC793:

As a general rule, reset (RST) must be sent whenever a
segment arrives which apparently is not intended for the
current connection. A reset must not be sent if it is not clear
that this is the case.

Transmission Control Protocol RST packets are used to unconditionally
terminate a connection and to tell the sender to cease any further attempts to
communicate. The system, without much hesitation, sends an RST when
encountering unexpected traffic, according to the rule in RFC793. (Naturally,
RST packets themselves, even when unexpected, are not replied to; if they
were, an endless stream of RSTs would bounce back and forth upon the
slightest network hiccup.)

Idle scanning uses and cleverly abuses the fact that a bystander, a witness
host, will handle all unexpected packets in this way. The attack enables rogue
Netizens to scan a victim with whom they do not intend to directly communi-
cate. When idle scanning, the attacker uses an unsuspecting and randomly
chosen system on the Internet to scan a third system (the real victim), with-
out ever revealing their own identity.

Idle scanning works like this: The attacker spoofs a SYN packet to a given
port they want to check on the victim’s system. This packet is addressed to
the victim host, but with a spoofed return address of the witness system
instead of the attacker’s system. This alone does not sound like a good way to
get anything done, but wait just a moment.
Smoke and Mir rors 195

What happens next depends on whether the port is open:

 If the probed port on the victim system replies with RST to the witness
host, the witness host receives it and simply ponders the RST in silence,
without generating any traffic back to the victim.

 If the probed port is open, the victim replies with SYN+ACK. The wit-
ness, with utmost disbelief, concludes that it had never sent a SYN packet
to begin with, so it sends RST to instruct the victim that they are grossly
mistaken and that they had better stop now. The victim sheepishly
accepts the response and drops all records for the connection it hoped
to accept.

The relevance of this distinction is difficult to appreciate at first. But
return to Chapter 9, and recall the following information about one of the
fields in an IP header:

The identification number (ID) is a 16-bit value that differ-
entiates IP packets when fragmentation occurs. Without IP
IDs, if two packets are fragmented at once, reassembly
would severely mangle, interchange, or otherwise damage
fragments of two packets that were fragmented simulta-
neously. IP IDs uniquely identify several reassembly buffers
for different packets. The value used for this purpose is
often chosen simply by incrementing a counter with every
packet sent; the first packet sent by a system has an IP ID
of 0, the second an Internet Protocol of ID 1, and so on.

Because the attacker has chosen a witness host that indeed uses this IP
ID selection scheme (and there are many candidates to choose from), they
can now easily determine whether the witness host has sent an IP packet
within a given time frame. They do so simply by sending some meaningless
traffic to the witness system before and after the actual probe and comparing
IP ID values in the responses it sends. If two observed IP IDs differ only by 1,
no packets were sent out by the witness system in between. However, if the
difference is more than 1, some packets were indeed exchanged, though we
cannot be sure with whom.

The attacker can also issue a probe just before sending a spoofed packet
to the victim and shortly thereafter. Thus, they can determine whether a port
is open or closed based on the witness host’s replies. If the witness had an
increased IP ID, it most likely replied with an RST to the victim, which means
that the victim must have sent SYN+ACK in the first place in response to the
spoofed packet. The attacker can then conclude that the port is open. If, on
the other hand, the witness produces the next IP ID as expected, it did not
receive any traffic from the victim, or it decided to ignore the received RST
packet.
196 Chapter 13

There are, of course, some practical considerations. Most important, the
witness host should be relatively idle during the idle scan, and the test should
be repeated several times to eliminate false positives; otherwise, we can
incorrectly interpret some third-party communications on the witness’s side
as telling us that a specific port on the victim’s machine is open.

NOTE Neither issue has proven to be much of a deal, however, and many advanced tools
(beginning with idlescan in 1999, and now the ingenious NMAP) implement idle
scanning and do it well.

The importance of idle scanning is that it can obfuscate the origin of a
scan not by merely trying to discourage the victim, but by actually inhibiting
any identifiable communications from the attacker. This makes it more
difficult to track the attacker without the help of the owner of a witness host
(which itself can be queried by the attacker for IP IDs as a part of legitimate
traffic such as an HTTP session and hence can have a hard time figuring out
whether it was used as a tool for an attack at all) or from external entities
(law enforcement and ISPs). Because law enforcement response is usually
initiated only once the system is compromised, not merely probed (curious
competitors can sleep soundly) and requires the victim to admit to being
compromised (which is not always convenient for certain large
corporations), the attacker feels rather safe.

NOTE Despite at first appearing no different from a regular SYN scan in the results it can
offer, idle scanning offers a fairly unique scanning perspective. The use of witness
scans makes it possible to see the destination system from the viewpoint of a witness. If
the witness has higher access privileges to the victim’s system (if, for example, it is a sys-
tem within a protected network behind a firewall, or a system for which certain lax IP
filtering rules are set for easier access to a corporate network, and so on), you can use
idle scanning to discover the inner workings of a protected network.

Defense against Idle Scanning

There is at present no immediate defense against an idle scan, and no easy
way to tell it from a regular SYN scan. However, it is quite easy to defend
against being a witness host by using random or constant IP IDs, as discussed
in Chapter 9. Although doing so won’t make attacks against you—or attacks
in general—any more difficult (plenty of systems will always use sequential
identifiers), it will prevent your network from being abused for this purpose.

To avoid the firewall bypassing (“perspective”) attack, use common sense
when designing access channels for external systems, and use proper ingress
filtering on gateway systems, dropping all packets that arrive from the
Internet with source addresses that seem to belong to a protected network.
Although, as discussed previously, this type of filtering might break path
maximum transmission unit (PMTU) discovery mechanisms, it usually fixes
more problems than it breaks.
Smoke and Mir rors 197

Food for Thought

Although less feasible, it is still possible to use IP IDs for the general profiling
of IP activity. In fact, when the victim establishes an interactive session to a
remote system, IP IDs can even be used to time keystrokes or similar actions,
thus turning this technique into one of the previously discussed timing attack
scenarios. Similarly, you can enhance user-racking capabilities by measuring
the number of packets sent by a specific host between two subsequent visits
to a monitored network.

You can also use TCP sequence numbers on certain systems to achieve
the same functionality as IP ID analysis, depending on the ISN-generator
design. I encourage you to explore this idea in more detail.

As for tracking down the source of an idle scan (or any other spoofed
attack), see Chapter 17.
198 Chapter 13

C L I E N T I D E N T I F I C A T I O N :
P A P E R S , P L E A S E !
Seeing through a thin disguise may come in handy

on many occasions

The challenge of determining the true identity of
software and its legitimacy can be rather easily resolved
locally on the computer running the software. But it’s
not so easy to do so over a network.

Both system administrators and application developers often attempt to
identify software being used at the other end of a network-based session, with
varying degrees of success. We attempt to identify software for several reasons.
For the WWW (World Wide Web), the most common goal is to optimize the
content served to a client based on the rendering engine being used—whether
that content is legitimate or malicious. The goal for client identification within
numerous other communication schemes—instant messengers, mail clients,
and so on—is to ensure policy compliance and to detect communications
originating from possibly dangerous or otherwise unacceptable applications.
And last but not least, programmers themselves attempt to identify software to
prevent unapproved (or unlicensed) software from using a particular network
service (possibly stripping them of some of their income) or to detect cases
such occurrences and take corrective actions.

The most trivial and common way to identify the other party relies on
examining the information voluntarily advertised by the remote system. This
information can include simply noticing a “welcome” banner provided by a
server, taking a look at protocol headers sent by a client (such as X-Mailer in
emails, User-Agent within WWW sessions, and so forth), and analyzing textual
status and error or warning messages used by the service in response to certain
types of traffic.* Unfortunately, the first method is extremely unreliable and
easily sabotaged by users who have something to hide; the last method is
intrusive and quite difficult to use against clients without causing problems.
(Most client software is designed to bail out and complain upon encountering
the first error condition; users who, as a result of an attempt to identify their
software, encounter an error message and cannot legitimately access a service,
will not be impressed.)

Camouflage

Examining textual announcements produced by the client is unreliable not
simply because users can camouflage their Internet software (web browsers,
mail clients, and so forth) in order to mimic the responses of the most popular
clients, but because they often also have a good incentive to try: either to
blend in with the crowd or simply to fool servers that tend to know better what
version of a program the visitor needs to be running. It’s simple to do so,
either by using a client’s built-in functionality or by modifying a program’s
sources or binaries with one of a multitude of freely available tools.

Too, because many corporate environments have begun to implement
more rigorous content filtering in order to block unwanted traffic, some
coders who work on more questionable applications have, in response,
begun to impersonate harmless software. Not long ago, peer-to-peer music-
sharing applications, malicious Trojan horses, and spyware began to pretend
to be the most prevalent web browser, Microsoft Internet Explorer, in their
outgoing communications. The same was true for many address-gathering
web crawlers used by shoddy marketing businesses around the globe.

Other protocols are also plagued by impersonators. Not surprisingly, a
majority of much despised bulk-mailing software used by spammers and con
artists pretends to be programs such as Microsoft Outlook, PINE, Mutt,
Eudora, The Bat!, or Netscape Mail. The basic premise is to hide behind
camouflage to sneak past network administrators who, were they to become
aware of the software’s presence, would find it easy to block them. No sane
spammer will announce that their emails are coming from “Uncle Bernie’s
Notorious Mass-Mailer, Extreme Edition,” simply because it would be too
easy for a user or spam filter to filter them out.

* A popular tool that uses fingerprinting to analyze responses is AMAP by THC; you can find out
more at http://www.thc.org/releases.php. Fyodor’s NMAP can identify services by analyzing
banners.
200 Chapter 14

Approaching the Problem

Because it is trivial to modify the basic text responses and banners returned
by a program, we need to find a better way to detect trickery than trivial
textual response matching in order to identify client software with reasonable
accuracy. Solutions that simply check less obvious parameters or responses
are bound to fail at one point or another: although in almost all cases, it is
possible to devise a single check to identify a specific type of undesirable
software, three heads will grow back in place of the one just cut off.

It soon becomes impractical to try to address every single incarnation of
malicious software. In some cases, a general malicious client detection can be
achieved by simply checking for patterns that are clearly indicative of the
type of abuse we hope to prevent: The difference between a legitimate mail
client and a spammer’s software is that the former is unlikely to attempt to
send out 10,000,000 mails in one shot. Yet, this approach is very limited:
while for some protocols and some clearly defined attacks, this may work like
a charm; for WWW traffic, it is another story, and it is difficult to hit the right
spot without ending up with an excessive number of false positives or missed
programs.

Because it is perceived as the core of all Internet services available to
end users, the WWW is one of few protocols that simply must be open for
almost all, and, thus web traffic is most commonly chosen by naughty
applications to masquerade their behavior in a system and the data they are
transferring to a remote host. It is not uncommon for web browsers to
trigger bursts of connections to various sites or to perform thousands of
requests per hour. At the same time, it is not impossible to send out
sensitive information to a remote host in a single, brief connection. Here,
traffic profiling falls just short of providing an answer.

Towards a Solution

Given all this, it would appear that differentiating spyware or a Trojan horse
from a legitimate application can be extremely tricky. However, as it turns out,
some good tools are available for precisely identifying this kind of software,
thus enabling interested parties to more accurately and precisely identify client
applications. The most promising and universal approach, generally referred
to as behavioral analysis (a fancy term for old and busted “timing patterns”) aims
to analyze the subtle internal dependencies between subsequent portions of
traffic, as opposed to looking at the actual data exchange in a single request or
in the sheer volume of connections over time. Because these dependencies are
closely associated with internal algorithms and a program’s performance, they
are much more difficult to spoof than most of the other metrics we could
examine. I’ll discuss this approach in this chapter and propose a basic analysis
toolset to achieve this level of accuracy and detail, using World Wide Web
traffic as a convenient example.
Client Ident i f icat ion: Papers, P lease! 201

But before we dive into the details, we need a bit of background. Let’s
take a quick look at the history of the WWW, the design of web clients, and
the protocols they use to talk to servers. It all began earlier than you might
think. . . .

A (Very) Brief History of the Web

The concept of the World Wide Web is not particularly difficult to grasp: the
idea behind the Web is to give users instant access to a number of cross-
referenced, linked documents that combine different types of information.
Simple enough.

The Web as we know it today consists primarily of text with metadata
(such as references to other files, formatting elements, annotations, dynamic
or interactive elements), often enhanced with all kinds of multimedia (video,
music, and various applications). It represents the spirit of our times and
signifies a brand new method of communicating and finding information.
But the idea of the Web is not new. It was born many years before technology
made it possible to achieve this set of features for electronic documents—
perhaps long before electronic documents were even considered a serious
possibility.

According to a timeline1 published by the World Wide Web Consortium
(W3C), the concept of hyperlinking was first discussed in the Atlantic Monthly2
back in 1945 by Vannevar Bush, a director of the Office of Scientific Research
and Development during and after World War II.

Bush proposed a device called Memex, a personal, electromechanical
unit that could, in fact, be seen as an early predecessor of today’s PDAs.
Memex provided storage for a user’s documents and personal files and
aimed to provide intuitive mechanisms for accessing the data. One of
Memex’s features was its ability to create and follow links between documents
stored on microfilm. For some reason, the idea of an insanely complex
mechanical device running on microfilm did not really catch on back then.

The concept of hyperlinking popped up several times in later years,
resulting in the first computer-based implementations in the 1960s. These
attempts were not particularly successful though, largely because the com-
puting power needed to make the technology appeal to users was still years
in the future.

The right time came in the late 1980s. After the microcomputer boom,
and shortly before the frontal assault of the PC platform, a number of
humble proposals made the rounds at Conseil Europeén pour la Recherche
Nucléaire* (CERN) concerning the possibilities of hyperlinking. Tim
Berners-Lee, one of the CERN researchers, is by all accounts the one to
officially blame for spawning HyperText Markup Language (HTML), a set
of controls for embedding metadata, links, and media resources in text
documents. (Truth be told, HTML, the core of the Web as we know it, is

* European Laboratory for Particle Physics, Geneva, Switzerland.
202 Chapter 14

hardly an entirely new design and borrows some ideas from SGML, an ISO
8879 Standard Generalized Markup Language of 1986.) The first web
browser was born shortly thereafter on what is now a barely known, but was
then an innovative and advanced computer platform, NeXT. The browser
was given the ubiquitous name World Wide Web.

Now that we came up with a catchy name, the revolution was unstoppable.
In 1992, Berners-Lee filed an initial specification draft3 for HyperText Transfer
Protocol (HTTP), a tool for encapsulating HTML data and other resources in
server-to-client communications. In 1993, several web browser engines became
available, and a handful of web servers were already serving their contents to
curious visitors. Of course, HTTP accounted for only a smashing 0.01% of all
backbone traffic, but it was rising!

The first popular web browser, Mosaic, was developed at the National
Center for Supercomputer Applications, at the University of Illinois. It
borrowed from Berners-Lee’s code, but added support for contents other
than text, and introduced fillable forms and many other features that we
now take for granted. Mosaic’s code eventually evolved into Netscape
Navigator, then forked into the open-source project dubbed Mozilla—
whose codebase later served as a foundation for subsequent generations
of Netscape Navigator. At the same time, just to further confuse users, a
company called Spyglass transformed Mosaic into the core of what was to
become Netscape’s main competitor, Microsoft Internet Explorer.

In 1994 the W3C, a body devised to oversee the development of the Web,
was formed. The first official, much-improved, and extended version of the
protocol was filed by Berners-Lee, Roy T. Fielding, and Henrik Frystyk in
1996, soon followed by the HTML 3.2 specifications. In subsequent years we
saw newer, enhanced versions of HTTP and HTML, now governed by the
W3C. And you all know the story’s ending; or is it only the beginning?

A HyperText Transfer Protocol Primer

HTTP4 is a surprisingly straightforward, text-based protocol built on top of
TCP/IP. A client for this protocol connects to an HTTP-capable service on a
remote server and makes a request, asking for a specific resource on the
server. An HTTP request includes the following parameters in the first line
of a query:

 A method for accessing the resource. Most often, the client simply asks
to retrieve a file, by issuing a GET request (though other methods exist
for tasks such as submitting form data, performing diagnostics, storing
data on a server, or executing certain extensions).

 A universal resource identifier (URI). This is a path to a static file or to
a dynamic executable that is the subject of the request. If the file is a
dynamic executable, it is also possible to pass additional, appropriately
encoded parameters to this program as a part of the URI.
Client Ident i f icat ion: Papers, P lease! 203

 The version of the protocol the client supports and wants to use. The
server can choose to reply with a lower protocol version if the one used
by the client is unsupported. (If this information is missing, the client is
assumed to be using HTTP/0.9, an early and obsolete version of the pro-
tocol, which we won’t address here.)

For example, an HTTP request might look like this:

GET /show_plush_toys.cgi?param1=value¶m2=this+is+a+test HTTP/1.1
Host: www.plush-penguins.com
User-Agent: Joe's Own Web Client (UnixWare)
Accept: text/html, text/plain, audio/wav
Accept-Language: pl, en
Connection: close

This request asks for a resource called /show_plush_toys.cgi at www.plush-
penguins.com. Judging by the file’s cgi extension, this is a dynamically
executed program that is invoked with two parameters (param1 and param2), as
listed following the question mark.

The client request can be (and in this example indeed is) followed by a
number of text headers, one on each line, that specify additional parameters.
These can be anything from client identification (User-Agent field, as men-
tioned earlier), to the preferred language for the contents (here Polish and
English), to the specification of a virtual server the client is referring to.
(If several domain names point to a single IP address, this specification
makes it possible for the server to determine whether the user is looking
for www.squeaky-ducks.com and www.plush-penguins.com, both of which
might be hosted on the same system.)

The protocol mandates some of these headers. The set of required
headers depends on its version, but most servers are fairly lax and make no
fuss if some are omitted. This aside, some headers specify features that go
beyond the protocol’s specification itself.

Each request must end with an empty line, denoting the end of the
client headers, at which point, for most types of requests, the server is
expected to process the query and produce a reply. The server usually
responds with a message in a structure similar to the query, starting with an
HTTP return code and some descriptive text, like this one:

HTTP/1.0 404 Not Found
Content-Type: text/plain
Server: Uncle Mary's Cookie Recipe Server (Linux and proud of it!)
Date: Mon, 09 Feb 2004 19:45:56 GMT

The document you are looking for is nowhere to be found.

The return code or message might report various conditions, such as the
successful completion of the request, an instruction for the browser to look
somewhere else, or an error message such as “File Not Found” or “Permission
204 Chapter 14

Denied.” This information is followed by a set of headers, similar to the format
accepted for the request. These describe various parameters such as the server
software version, the location the browser should proceed to next, a content
type specification for the returned file, a setting used to differentiate images
from plain-text or HTML documents from binary files, and so on. The actual
contents follow, if available.

As you can see, basic HTTP is fairly simple. Although it does offer some
advanced features, most are either slightly bizarre, or just rarely used. (I’m
guessing that you do not see the “402 Payment Required” error message
every day.) Still, it would be naive to trust that the basic protocol is sufficient
to meet the needs and expectations of today’s users.

Making HTTP Better

The days when a typical website consisted of several kilobytes of static text and
perhaps some minor graphic elements are long gone. As computers have
become more powerful, and 300 bps modems have become easier to find in a
museum than in every household, form has begun to dominate substance on
the Web. Hundreds of kilobytes of images and subpages, subframes, and client-
side scripts are commonly used to make sites more attractive and professional,
with varying degrees of success. For many sites, multimedia contents have
actually become the primary type of information served, with HTML providing
only a placeholder for images, video, embedded Java programs, or games. The
Web in general is no longer merely a way to tell others about your private
projects or interests; the driving force behind it is the ability to market and sell
products and services cheaper and faster than ever. And marketing demands
the eye-catching presentation of products and services.

Web browsers, web servers, and HTTP itself have had to adapt to this
changing reality to make it easy to deploy new technologies and follow new
trends. Conveniently enough, many of the technologies introduced in this
process have interesting security implications for mere mortals and can also
help us identify the client on the other end of the wire in a transparent way.
As such, we must consider the optional features and extensions introduced
since the day the Web was born.

Latency Reduction: A Nasty Kludge

The problem with the Web and some other current protocols is that the
content presented to a user by a single multimedia site must be obtained from
various sources (including wholly different domains) and then combined.
Web pages have their text and formatting information separate from actual
images and other sizable goodies (a practice truly to be praised by those who
have a limited bandwidth and just want to get to the point).

This situation makes it necessary for clients to make several requests in
order to render a web page. The most naive way to achieve this is by requesting
each piece, one by one, in sequence, but this is not the best practice in the real
Client Ident i f icat ion: Papers, P lease! 205

world because it leads to bottlenecks: Why wait for a page to load simply
because the banner server is running slowly? Hence, to improve the speed
of content retrieval, the browser issues numerous requests at once.

And herein lies the first shortcoming of HTTP: it offers no native
ability to serve simultaneous requests. Instead, requests must be issued
sequentially.

The sequential (also called serial) fetch model results in a considerable
performance penalty if one of the web page elements needs to be downloaded
from a slow server or over a spotty link or if it takes a while for the server to
prepare and deliver a particular element. If sequential fetching were the only
option, any such slow request would prevent subsequent requests from being
issued and served until it (the slow request) is filled.

Because newer versions of HTTP have not improved this situation, most
client software implements a kludge: the web browser simply opens a number
of simultaneous, separate TCP/IP sessions to a server or a set of servers and
attempts to issue many requests at once. This solution is actually quite sane
when the page is requesting resources from several separate machines.
However, it’s not a good fix when the requested resources are on a single
system, where all requests could be made in a single session and reasonably
managed by the server. Here’s why:

 The server has no chance to determine the best order in which to serve
requests. (If it could, it would serve time-consuming, sizable, or simply
the least relevant objects last.) It is simply forced to do all nearly at once,
which can still cause the most important stuff to be needlessly delayed by
increased CPU load.

 If several larger resources are served at once, and the operating system
scheduler switches between the sessions, the result can be considerable
negative performance impact due to the need for the disk drive to seek
between two possibly distant files repeatedly and in rapid succession.

 Considerable overhead is usually associated with completing a new TCP/
IP handshake (though this is somewhat lessened by keep-alive capabili-
ties in newer versions of HTTP). It’s more efficient to issue all requests
within a single connection.

 Opening a new session and spawning a new process to serve the request
involves overhead on the operating system level and strains devices
such as stateful firewalls. Although modern web servers attempt to
minimize this problem by keeping spare, persistent processes to accept
requests as they arrive, the problem is seldom eliminated fully. A single
session avoids unnecessary overhead and lets the server allocate only
the resources absolutely needed to asynchronously serve chosen
requests.

 Last but not least, if the network, not the server, is the bottleneck, perfor-
mance can actually deteriorate as packets are dropped as the link satu-
rates with data from several sources arriving at once.
206 Chapter 14

Alas, good or bad, this architecture is with us for now, and it is still better
than serial fetch. We should acknowledge its presence and learn to take
advantage of it.

How can this very property help us to identify the software that the client is
using? Quite simply. The significance of parallel file fetching for the purpose
of browser fingerprinting should be fairly obvious: no two concurrent fetch
algorithms are exactly the same, and there are good ways to measure this.

But before we turn our attention to parallel fetching, we need to take a
look at two other important pieces of the security and privacy equation for
the Web: caches and identity management. Although seemingly unrelated,
they make a logical whole in the end. Thus, a brief intermission.

Content Caching

Keeping local caches of documents received from the server is one of the
more important features of the Web during its rapid expansion in recent
years.* Without it, the cost of running this business would have been
considerably higher.

The problem with the increasing weight and complexity of a typical
website is that it requires more and more bandwidth (which for businesses
remains generally quite expensive), as well as better servers to serve the data
at a reasonable speed.

If performance is not impacted by bandwidth bottlenecks, solutions such
as concurrent sessions (as described earlier) put additional strain on service
providers instead. The reason might be fairly surprising: if a person on a
fairly slow link (such as a modem) opens four subsequent sessions to fetch
even a fairly simple page, four connections and four processes or threads
need to be kept alive on the server, taking away those resources from those
with faster connections.

Finally, to make things worse, heavier and more complex websites don’t
always mesh with user expectations. Relatively long web page load times that
were once considered fairly decent now seem annoying and drive users away.
In fact, research suggests that the average web user won’t wait more than 10
seconds for a page to download before they move on.5 The result is that
corporations and service providers need more resources and better links to
handle the incoming traffic. In fact, had things been left the way they were
initially designed, the demand for serverside resources would have likely
exceeded our capacity to fulfill the demand some time ago.

Of some help is that the contents served to web surfers is static or
changes seldom, at least when compared with the rate at which a resource is
retrieved by users. (This is especially true for large files, such as graphics,
video, documents, executables, and so on.) By caching data closer to the end
user—be it on the ISP level or even on the endpoint browser itself—we can

* Its importance is slowly decreasing, however: as more and more web pages are generated
dynamically, and our Internet backbone becomes more mature and capable, caching is bound
to lose its significance.
Client Ident i f icat ion: Papers, P lease! 207

dramatically decrease the bandwidth used for subsequent visits from users
who share a common caching engine and make it easier on the servers
handling the traffic. The ISP benefits from a lowered bandwidth consump-
tion, as well, being able to serve more customers without having to invest in
new equipment and connections. What HTTP needs, however, is a mecha-
nism to keep the cache accurate and up-to-date. The author of a page (either
human or machine) needs to be able to tell the cache engine when to fetch a
newer version of a document.

To implement document caching, HTTP provides two built-in features:

 A method for telling, with minimum effort, whether a portion of data
has been modified since the most recent version held by the cache
engine (the document recorded at the time of the last visit).

 A method for determining which portions of data should not be cached,
whether for security reasons or because the data is generated dynami-
cally every time the resource is requested.

This functionality is in practice achieved fairly simply: The server returns
all cacheable documents with the regular HTTP session, but with an additional
protocol-level header, Last-Modified. To no surprise, this header represents
the server’s idea of the time this document was last modified. Documents that
cannot be cached are, on the other hand, marked by the server with the
header Pragma: no-cache (Cache-Control: no-cache in HTTP/1.1).

The client browser (or an intermediate cache engine run by the ISP) is
supposed to cache a copy of every cacheable page based on the presence of
an appropriate header, along with the last modification information. It should
keep the cached page for as long as possible, either until the user-configured
cache limit is exceeded or the user manually purges the cache, unless specifi-
cally instructed to discard it after a specific date with an Expires header.

Later, when the site is visited again, the client concludes that they have
a previous instance of the page cached on the disk and follows a slightly
different procedure when accessing it. As long as a document lives in the
cache, the client attempts to fetch the file every time the user revisits a site,
but specifies the If-Modified-Since header with every request, using the
value previously seen in the Last-Modified header for <Since>. The server is
expected to compare the Modified-Since value with its knowledge of the
last modification time for a given resource. If the resource has not been
changed since that time, the HTTP error message “304 Not Modified” is
returned instead of the requested data. As a result, the actual file transfer is
suppressed, thus preserving bandwidth (with only a couple of hundred bytes
exchanged during this communication). The client (or intermediate cache
engine) is expected to use a previously cached copy of the resource instead
of downloading it again.

NOTE A more up-to-date approach, ETag and If-None-Match headers, a part of entity tagging
functionality of HTTP/1.1, works in a similar manner but aims to resolve the ambigu-
ity surrounding the interpretation of file modification times: the problems that stem
208 Chapter 14

from a file being modified several times in a short period of time (below the resolution of
the clock used for Last-Modified data). of files being restored from a backup (with a
modification time older than the last cached copy), and so on.

Managing Sessions: Cookies

Another important and seemingly unrelated requirement for HTTP was that it
be able to differentiate between sessions and track them across connections,
store session settings and identity information. For example, some websites
greatly benefit from the ability to adapt to one’s personal preferences and to
restore the look and feel chosen by the user each time they visit the site.
Naturally, a user’s identity can be established by prompting for a login and
password every time a page is viewed, at which point the user’s personal
settings can be loaded, but this bit of extra effort dramatically reduces the
number of people who would be willing to do this to access the page.

A transparent and persistent way to store and retrieve certain information
from the client’s machine was needed to ensure seamless and personalized
access to web forums, bulletin boards, chats, and many other features that
define the browsing experience for so many people. On the other hand, the
ability for web server administrators to recognize and identify returning visitors
by assigning them a unique tag and retrieving it later meant the surrender of
anonymity in exchange for a little convenience. Such a mechanism would give
companies with second-grade ethics a great tool to track and profile users,
record their shopping and browsing preferences, determine their interests,
and so forth. Search engines could easily correlate requests from the same
user, and content providers that serve resources such as ad banners could use
this information to track people even without their permission or the
knowledge of site operators.* Regardless of the concerns, however, there
seemed to be no better, sufficiently universal alternative for this mechanism.
And so web cookies were born.

Cookies, as specified in RFC2109,6 are small portions of text that are
issued by a server when the client connects to it. The server specifies a Set-
Cookie header in the response to the visitor. This portion of text is, by its
additional parameters, limited in scope to a specific domain, server, or
resource and has a limited lifespan. Cookies are stored by cookie-enabled
client software in a special container file or folder (often referred to as a
cookie jar) and are automatically sent back to the server using a Cookie
header whenever a connection to a specific resource is established again.

Servers can choose to store (or push out) user settings in Set-Cookie
headers and just read them back on subsequent visits; and here is where
cookie functionality would end in a perfect world. Unfortunately, computers

* If an advertisement banner or any other element of a website is placed on a shared server, such
as http://banners.evilcompany.com, the operator of evilcompany.com can issue and retrieve
cookies whenever a person visits any legitimate website that uses banners supplied by them.
Needless to say, most banner providers do issue cookies and track users, albeit primarily for
market research purposes.
Client Ident i f icat ion: Papers, P lease! 209

have no way of telling what is stored in a cookie. A server can choose to assign
a unique identifier to a client using the Set-Cookie header and then read it
back to link current user activity to previous actions in the system.

The mechanism is wildly regarded as having serious privacy implica-
tions. Some activists downright hate cookies, but the opposition to this
technology is getting less and less vocal nowadays. Browsing the Web with
cookies disabled gets increasingly more difficult—with some sites even
refusing traffic from clients that do not pass a cookie check. Thankfully,
many browsers offer extensive cookie acceptance, restriction, or rejection
settings and can even prompt for every single cookie before accepting it
(although the latter is not particularly practical). This makes it possible to
mount a reasonable defense of your privacy, if only by defining who the
“good guys” are and who to trust.

But is our privacy in our hands then?

When Cookies and Caches Mix

The privacy of web browsing has long been considered a hot issue, and not
without reason. Many people do not want others to snoop on their preferences
and interests, even if their whereabouts are not particularly questionable.
Why? Sometimes, you simply do not want a shoddy advertising company to
know that you are reading about a specific medical condition and then be
able to link this information to an account you have on a professional
bulletin board, particularly because there is no way of knowing where this
information will end up.

Cookie control makes our browsing experience reasonably comfortable,
while keeping bad guys at bay. But even turning cookies off does not prevent
information from being stored on one’s system to be later sent back to a
server. The functionality needed to store and retrieve data on a victim’s
machine has long been present in all browsers, regardless of cookie policy
settings. The two necessary technologies work in a similar manner and differ
only in terms of their intended use: cookies and file caching.

Somewhere back in 2000, Martin Pool posted a fairly short but insightful
message7 to the Bugtraq mailing list, sharing an interesting observation and
supporting it with some actual code. He concluded that there is no signifi-
cant difference between the Set-Cookie and Cookie functionality versus Last-
Modified and If-Modified-Since, at least for systems that do not use centralized
proxy caches and that store copies of already fetched documents locally on
disk (as is the case with most of us mere mortals). A malicious website
administrator can store just about any message in the Last-Modified header
returned for a page their victim visits (or, if this header is sanity-checked, it
might simply use a unique, arbitrary date to uniquely identify this visitor).
The client would then send If-Modified-Since with an exact copy of the
unique identifier stored by a rogue operator on their computer whenever a
page is revisited. A “304 Not Modified” response ensures that this “cookie” is
not discarded.
210 Chapter 14

Preventing the Cache Cookie Attack

Using your browser to slightly tweak Last-Modified data in response might
seem like a neat way to prevent this type of exposure (while introducing
some cache inaccuracy), but this is not the case. Another variant of this
attack is to rely on storing data in cached documents, as opposed to using
tags directly: a malicious operator can prepare a special page for the victim
when a website is visited for the first time. The page contains a reference to a
unique file name listed as an embedded resource (for example, an image).
When a client revisits this page, the server notices the If-Modified-Since
header and replies with the 304 error message, prompting the old copy of
the page to be used. The old page contains a unique file reference that is
then requested from the server, making it possible to map the client’s IP to a
previous session in which that file name had been returned. Oops.

Naturally, the lifetime of cache-based “cookies” is limited by cache size
and expiration settings for cached documents configured by the user.
However, these values are generally quite generous, and information stored
within metadata for a resource that is revisited once every couple of weeks
can last for years, until the cache is manually purged. For companies that
serve common components included on hundreds or thousands of sites
(again, banners are a good example), this is a nonissue.

The main difference with these cache cookies, compared with cookies
proper, is not a matter of the functionality they offer, but rather the ease of
controlling the aforementioned exposure. (Cache data must also serve other
purposes and cannot be easily restricted without a major performance impact
associated with disabling caching partly or completely.)

In this bizarre twist, you can see how two aspects of the Web collide,
effectively nullifying security safeguards built around one of them. Practice
shows that intentions are not always enough, because rogues are not always
willing to play by the rules and use the technology the way we want them to.
Perhaps turning your cookies off does not make that much of a difference
after all?

But then it is about time to go back to the main subject of our discussion.

Uncovering Treasons

The subject of detecting trickery and accurately fingerprinting client software,
that is. I have thus far mentioned that the task of detecting deceptive clients is
complex, but not impossible and that behavioral analysis, a careful monitoring
of the sequence of events produced by the browsers in question is a route
worth exploring.

HTTP is a particularly generous subject of study, because, as we have seen,
much of the activity occurs in parallel or nearly in parallel, and the exact
queuing and data-processing algorithms are fairly subtle and unique for each
client. By measuring the number of files downloaded at once, the relative time
delays between requests, the ordering of requests, and other fine details of a
Client Ident i f icat ion: Papers, P lease! 211

session, it is possible to measure the unique characteristics of a system on a
level that is much more difficult for the user to tamper with. Hence, you can
distinguish impersonators from law-abiding citizens with no effort.

To provide a real-world example of this approach in the simplest possible
way, and to stay as close to real applications as possible, I decided to see how
much could be told from existing, fairly limited samples of data that many of
you probably have on hand, so I reached for the standard logs of slightly more
than 1 million requests to a relatively popular website. The data used for this
analysis was a typical Apache web server access log, containing request
completion times, requested URIs, advertised browser data from the User-
Agent header, and other basic information of this nature. The page for
which the log was kept consists of a set of relatively small pictures of compa-
rable size and a single HTML document that calls for them all.

A Trivial Case of Behavioral Analysis

Apache’s practice of logging requests when they are completed, as opposed
to logging them when issued, could be perceived as a problem, but is actually
quite helpful, assuming the requested set of files is relatively homogeneous.
Request initiation order is usually more influenced by the sequence in which
resources are referenced within the main page, whereas completion timing is
a more complex beast.

Completion order probabilities depend on the number of requests,
inter-request delays, and other parameters that subtly but noticeably vary
from browser to browser. In particular, browsers that always keep only one
connection open always issue requests in a known order, A-B-C-D; browsers
that open three connections at once and issue requests rapidly are just as
likely to produce B-A-C-D, C-B-A-D, C-A-B-D . . . and in those later cases,
requesting queuing and session management matters most.

Naturally, we cannot forget that the observed sequence is also heavily
affected by network latency and reliability and other random issues. Still, it is
reasonable to expect that, for such a large set of samples, these non–browser-
specific effects would either average out or affect data for all clients in a
similar way. And when this happens, we will hopefully see subtle differences
between browsers that lie underneath a friendly user interface.

Figure 14-1 shows a statistical distribution of attempts to load the ten-
element web page mentioned earlier for the four most popular web clients
in the dataset. Each graph is divided into ten major segments. The first
corresponds to the main HTML file, which is directly requested and
naturally makes the first element of the site. The remaining nine major
segments correspond to nine images referenced from this HTML, in the
order in which they are called for in HTML.

Each of the segments is further divided into ten discrete locations on the
X axis (not explicitly shown here to avoid cluttering the chart). The height of
the graph at the nth discrete location within a given segment represents the
likelihood of this particular file being loaded as the nth item in sequence.
212 Chapter 14

Figure 14-1: Behavioral pattern differences for popular web clients

To make the graph more readable, distribution probabilities are given as
percentages between 1 and 100 (corresponding to percentages, with all
values less than 1 percent rounded up), and discrete points are connected
with lines. The graphs are then plotted on a logarithmic scale (log10, with
major guides at 1, 10, and 100) to make subtle features more pronounced
and easier to visually compare.

In a perfect world, with fully sequential and predictable browsers, the first
segment would contain only a peak at the first (leftmost) discrete location; the
second segment would contain a peak only at the second location, and so
forth. In practice, however, some browsers issue many requests at once, and
thus the order is more easily shuffled: the third referenced file can end up
being loaded before the second or after the fourth. The less pronounced a
single spike is in each segment, the more aggressive the browser fetch
algorithm appears to be—for the more even the probability of this file being
loaded out of order is.

Internet Explorer

6 5 5 4 4 3 5 5 5 6

Netscape Navigator

7 5 5 6 7 7 6 6 6 7

Opera

5 4 4 3 3 2 2 2 3 4

Wget

10 10 10 10 10 10 10 10 10 10
Client Ident i f icat ion: Papers, P lease! 213

The differences should be clearly visible, even between browsers
historically based on the same engine: Mozilla and Internet Explorer. All
clients appear to observe the order in which files were referenced in the
main document, and so subsequent spikes move slowly from left to right
across the segments. Yet, as you can see, Mozilla is generally considerably
less impatient than Internet Explorer and more often finishes downloading
files in the order in which they were requested. Opera, on the other hand,
touted as the fastest browser on earth, is considerably less sequential (with
many files having two or three nearly identically pronounced spikes,
suggesting that a set of requests is issued so rapidly that the completion
sequence is almost arbitrary, and most heavily influenced by network
jitter). Wget, a popular open-source web spider, is for comparison perfectly
sequential (a pattern common for automated crawlers), uses a single
connection, and loads all files in the same order.

Giving Pretty Pictures Meaning

Pictures and graphs are nice, but have little or no value for automated policy
enforcement or abuse detection. To quantify observed patterns somehow, and
to make fingerprinting a bit more realistic, I decided to introduce a simple
metric that gives a segment a better score (in the range of 0 to 10) when only a
single peak is present and gives a lower score when the distribution is more
arbitrary. This could allow for creating a simple, ten-value fingerprint for a
specific piece of software and then match observed activity against a set of
signatures to determine the best fit.

To construct a metric that expresses a relative quality (linearity) Q
of observed behavior at major segment s, I used the following formula
(fn denotes the probability of file appearing at position n in fetch
sequence, expressed in percentage values for convenience and to upset
purists):

This equation, although scary at first sight, is actually straightforward.
I wanted the formula to give preference to the situation when this partic-
ular file is most often loaded at a fixed position in a sequence (that is, one
f value is near 100 percent, and remaining probabilities are close to 0
percent) over those when all positions are equally likely to occur (all f
values at 10 percent).

Qs 1.42

fn
2

n 1=

10

10

------------ 3–

=

214 Chapter 14

Because the sum of all elements of f is fixed (100 percent), the easiest
way to achieve this is to use a sum of squares: for any sequence of nonzero
numbers; a sum of squares of those numbers is always less than a square of
the sum. The highest and lowest results are as follows:

102 + 102 + 102 + 102 + 102 + 102 + 102 + 102 + 102 + 102 = 1,000

1002 + 02 + 02 + 02 + 02 + 02 + 02 + 02 + 02 + 02 = 10,000

The remaining math, besides the main sum, is used merely to map
results to a reasonable scale of 0 to 10 (when rounded).

The results of calculating this metric for each segment of observed
traffic for each browser are superimposed on Figure 14-1, as a numeric
value describing every segment of the graph. As expected, Wget scores
perfectly for each segment. Scores for the other browsers confirm previous
visual observations and make them more tangible. Although Internet
Explorer and the Mozilla/Netscape engines appear to have roughly similar
graphs, strong differences can be observed around load charts for items 4
through 6 and to a lesser degree across the entire fetch sequence. Opera
clearly distances itself from the bunch, with consistently lower scores for
each segment.

As a result, by applying a fairly trivial analytic tool, we ended up with a
framework for devising a practical method to identify browsers and detect
trickery in a statistically significant sample of user’s HTTP traffic. You can
enhance the model by analyzing other auto-load elements such as scripts,
HTML style sheets, image maps, frames, and other files that exhibit even
greater browser-to-browser variance. The Santa might find it easier this year
to prepare the naughty user list.

Beyond the Engine . . .

I merely hope to show how easy it is to detect hidden characteristics of an
unknown application by observing its behavior, without making any specific
assumptions or dissecting the internals of such a program. The above exact
numbers are likely not directly applicable to any website other than the one I
used, and so you are encouraged to do your homework should you find a
potential use for this technique. Once you profile a site or a set of sites, you
can use the data to efficiently recognize systems based on their activity
patterns over time.

Needless to say, the method I’ve used here is a (perhaps overly) sim-
plistic approach to behavioral analysis and is based on perhaps the most
trivial of all possible scenarios; I provide it as encouragement and to tempt
you to search for more. In advanced cases, you can readily use the process of
rendering contents in frames, tables, and other visual containers or fetching
and rendering special types of files to determine which browser is being used
Client Ident i f icat ion: Papers, P lease! 215

even without performing statistical matching—in various highly specific
aspects of browser activity, differences become far more striking. A clever
application of differential timing is also promising.

And consider this: You can take more thought out forms of behavioral
analysis a step further and deploy them not to tell one rendering engine
from another, but to tell machines from humans or even identify single
users. As discussed in Chapter 8, keyboard use patterns are often so unique
for an individual that it is possible to use them for biometrics. Similarly,
research suggests we can use the ways users click links, make choices, read
information, and so on to indicate who or what is behind a set of requests.8
Although now closer to scientific speculation than fact, this is a wonderful
field to explore and play with.

. . . And Beyond Identification

Browser activity and behavioral analysis applications go beyond the detection
of browser software—in fact, some enter the domain of user privacy and
anonymity.

An interesting piece of research published in 2000 by Edward Felten
and Michael Schneider9 makes a fascinating contribution to the possible
applications for the technique, an ability that is closely allied with caching
mechanisms deployed in today’s engines, bringing us to the point where all
the elements discussed so far finally meet.

The basic premise of their research is that, by inserting a reference to a
file on a particular site and then measuring the delay the browser encounters
while downloading it, it is possible to tell whether the user had visited a
particular site in recent days. Simple enough.

I’ll spare you a lengthy excursion into the world of theory, predictions,
and speculations (just this once) and instead propose a nearly real-world
example. Assume that I am running www.rogue-severs.com. I’ve decided that
my main page will, for some reason, refer to a picture (such as a front-page
logo) taken from www.kinky-kittens.com; I make the visual element difficult
to find or scale it down so that it is not visible, but it will be still loaded by a
browser.

An unsuspecting user visits my site. If they have never been to www.kinky-
kittens.com, it takes them a while to download the image I have referenced.
If they are a frequent visitor, however, the image is already present in their
cache and is fetched almost instantly.

Because the reference to the www.kinky-kittens.com resource is preceded
and followed by requests for other visual elements I happen to host on my site,
by deploying clever timing heuristics, it is possible to reliably measure whether
the entire logo had been fetched or whether it was already in the cache. All
this suffices to determine whether a newcomer to my page is indeed a frequent
visitor to a specific website (or a particular section of a website) and effectively
brutally invades their privacy. Although the scenario is not likely to be used for
216 Chapter 14

widely deployed routine espionage (primarily because clear evidence is left
behind and might be noticed by the operator of the server on whose users we
desire to snoop), targeted attacks might be quite effective.

In the end, all pieces of the puzzle fit together, perhaps loosely, but
still fit together. Users, programs, and habits can all be easily exposed
through a careful abuse of modern features of a popular Internet protocol.
Something not necessarily always comforting to the valued visitors of
www.kinky-kittens.com.

Prevention

Fully anonymizing one’s web-browsing experience appears to be a battle
already lost. Although some practices for improving the privacy and anonymity
of online web users are commonly accepted, these features can be easily
circumvented by a malicious website.

The problem is, unfortunately, too serious to dismiss. It is one thing to
have an entity we have decided to trust (such as an ISP) be aware of our
activity, but an entirely different issue when parties we’d rather not deal with
routinely gather sensitive profiling information and probably just as routinely
resell it to others as a part of their business model. This is enough to concern
even those who do not wear a tinfoil hat and aluminum underwear on a daily
basis.

On the other hand, the relative difficulty of remaining fully anonymous
or appearing completely harmless is important in environments where
HTTP traffic must be allowed and yet where users should be protected and
supervised without violating their privacy beyond bare necessity. In corporate
networks, the ability to track offending systems without the need to manually
inspect data is truly invaluable and appreciated both by users and system
administrators alike.

Food for Thought

No single component of HTTP is ill conceived, broken, or unwarranted. Yet,
when we put it all together, many security and privacy features seem to cancel
out, and the user is left quite exposed to eavesdroppers running rampant.
Sadly, we can do little without starting over from scratch, and there is no
guarantee that the results would work as well or provide even as much privacy
as HTTP, HTML, and WWW clients do now.
Client Ident i f icat ion: Papers, P lease! 217

T H E B E N E F I T S O F B E I N G A
V I C T I M

In which we conclude that approaching life with due optimism
may help us track down the attacker

I have discussed a variety of problems that can have a
significant cumulative impact on all daily communi-
cations, risks that we are not always comfortable with.
You have seen how others can exploit the network to
steal information or to get more than you expect or
would allow them to, as well as how to use these tech-
niques to gather more information about your enter-
prise or home network, and attackers that target it.

I hope I have offered both useful insight into how problems like these
are born and how to avoid them whenever possible. I’ve tried to show that
security and privacy implications are simply a part of every activity and that
they cannot be fully eliminated simply by making the correct design
decisions, installing the right software, or establishing and enforcing the
proper policies. Information disclosure simply cannot be fully suppressed,
and our only hope is to have enough information and knowledge about
potential leak or attack scenarios to mitigate the most significant ones as
much as possible in a particular application.

This, the third part of the book, has focused on wide area networking
and the threats that lurk there. Although this is the longest part and is only
now about to conclude, it is the furthest from offering a complete view of all
the issues that can arise in an open network. In fact, it would be quite diffi-
cult and largely pointless to discuss all variants of problems; thus I’ve chosen
to cover only the most complex, challenging, or fascinating aspects of host-
to-host communications. I’ve focused on discovering attack scenarios on
different protocol layers and different abstraction levels, instead of enumer-
ating concepts and attack vectors that rehash old ideas and add nothing new
to the subject. I hope that the information provided thus far will help and
encourage you to find other incarnations of these issues in other areas of
networking and computing—and perhaps even beyond.

We make a significant paradigm shift in the next part of the book as we
explore how careful observation of the network as a whole, rather than as
single systems, can be used to defend ourselves or to attack others. But
before we do, let’s look at some other possibilities in one of the more
unusual areas of network surveillance: passive counterintelligence—that is,
learning more about the attacker or their aims by analyzing their actions.
The data gathered this way can provide a powerful set of investigative leads
that make it easy to identify an attacker’s intentions, toolset, or even the
attacker themself. The task of building an attacker profile, attempting to
read their mind, and perhaps even playing a game of deception with them is
often a thrilling experience in and of itself.

Defining Attacker Metrics

As expected, you can acquire a good deal of information about a remote
rogue party by merely applying some of the common TCP/IP traffic metrics
discussed previously—such as passive operating system fingerprinting—to
the observed traffic. You can, for example, identify the specific tool used to
perform a port scan.

Similarly, we can also apply behavioral analysis to characteristics of
the attacker’s behavior such as inter-request delays and request ordering
(for example, the order in which ports are scanned and how fast). We can
use behavioral analysis with some success to track programs or, during a
manually performed break-in or unauthorized assessment attempts, even
to determine the individual characteristics of an attacker (such as their
computer proficiency).

One particularly interesting method we can deploy to identify the tool
the attacker used to scan our network relies on applying one of the methods
discussed in Chapter 9—port sequence fingerprinting—to a wholly new
task; this is based on the observation that a majority of scanners in use
today either scan networks and systems from lowest to highest ports or
addresses (sequentially) or randomize the order in which resources are
accessed. The latter approach is more often used and is regarded as the
220 Chapter 15

better because it can balance loads and make scanning detection slightly
more difficult. But, in a surprising twist, the use of randomness can fire back
at the attacker in a couple of bizarre ways.

The problem arises because their authors do not consider network scan-
ning tools mission-critical applications with high-security requirements. The
most common (and easiest) way to implement a pseudorandom number
generator in programs that do not require cryptographically secure output is
to invoke standard system or built-in language facilities. The ISO standard1
for the most prevalent programming language in the world, C, suggests that a
simple linear congruent algorithm be used to implement a standard C library
pseudorandom number generator (discussed in Chapter 1). The recipe for
building and using the generator devised by the standard is as follows:

1. The generator should be seeded with an initial 32-bit value (S0) by
invoking a standard library function srand(). If the generator is not
seeded, it will begin with a fixed default seed and will produce identical
result sequences in all cases.

2. In each call to rand(), the main function that is repeatedly invoked to
obtain subsequent pseudorandom numbers for use in user applications,
the seed S is recomputed as follows: St+1 = St * 1103515245 + 12345. The
result is truncated to 32 bits (modulo 4294967296).

3. The return value for each rand() call is the more significant word of St+1,
modulo 32768. In a 32-bit variant, one of the algorithms more commonly
used on today’s computers, the procedure in this and the previous step is
repeated several times to calculate subsequent bit portions of the result
value.

All linear congruent generators, including the one described here, are
susceptible to the general cryptanalysis methodology proposed by H. Krawczyk
in the ’90s, as mentioned in Chapter 1. Based on the observation of a couple
of subsequent (or otherwise ordered) outputs, it is possible to reconstruct the
internal state of the generator and thus predict all its previous and future
outputs.

Naturally, the immediate implication of this possibility—the victim’s
ability to determine, based on a knowledge of prior attempts, in what order
the attacker will try to target other resources on the machine or network—
is not particularly exciting or valuable itself. Still, this possibility has two
important consequences in the context of network probe attempts:

 We might be able to determine S0. If we know or can estimate when the
generator began its work (or, alternatively, which general properties the
initial seed should exhibit), it is possible to reconstruct the value used to
initialize the generator. Because S0 is the only input to the algorithm, it
must produce identical behavior for identical seed values—and so, we
can trace the seed by observing PRNG output.
The Benef i t s of Being a Vict im 221

 We might be able to determine t increments. Once we reconstruct the
generator state, it is possible to determine how many random values
were requested by the scanner by calling rand() in between two calls that
the scanner used to obtain values (port numbers or host addresses) for
packets the observer captured.

The importance of the first consequence of this design, our ability to
reconstruct the value used to initialize the generator, might be not imme-
diately apparent. But we have another bit of the puzzle to consider. One
common way to initialize a random number generator is to use a handy 32-
bit value that changes often enough not to risk identical PRNG behavior too
frequently. The system time counter is often used for this purpose, and it is
sometimes combined with another small number, such as the current
process ID (PID), to decrease the likelihood that two programs run in a short
time interval will produce similar results.

By applying this knowledge to the calculated S0, the probe victim can
discover the attacker’s system time (GMT or local, depending on the
operating system settings and scanner type). Knowledge of the system’s local
time can give the observer a hint about the attacker’s origin and identity in a
most trivial way. If they are trying to confuse us by spoofing packets from
various sources, we can get lucky ruling out those perceived sources for
which S0 would indicate a time zone not matching the geographical region
to which the source address belongs. For example, if by comparing the
attacker’s estimated system time with GMT we determine that attacker’s time
is five hours behind Greenwich Mean, we might conclude that they are likely
on the east coast of the United States and not in China. Thus, by comparing
our best guess of the time zone with records for various IP address blocks, we
can tell that, of all observed “decoy” scan sources, the attacker’s true identity
is more likely to be behind packets originating from a Boston ISP than ones
from an ISP located in Beijing.

 Additionally, once we know the attacker’s local time, we can track them
by measuring the distance of their system clock from the real time (and, in
the long run, how fast it drifts). Because computer clocks are usually not
particularly accurate and tend to drift quite a bit when they are not regularly
synchronized with an external source (as much as several minutes a day in
some cases), this might be a good way to correlate attacks carried out by the
same person. Different machines are likely to be systematically off by a
different amount of time that would be changing at a distinctive ratio.

Finally, when the PID is used as a part of the initialization seed along
with system time, and the attacker’s system time is known to be within a
certain range, the PID can be used to determine the approximate system
uptime or the number of tasks executed between two scans. Because every
new process on a machine is assigned a higher PID number, this dependency
is rather straightforward.*

* Although some systems offer optional PID randomization for the purpose of making certain
unrelated types of local attacks more difficult.
222 Chapter 15

By reconstructing the PRNG state, we can also see how many random
numbers were generated between the generation of two packets received by
the recipient. When only one system is being scanned, there should be no
gaps whatsoever or only marginal discrepancies due to network problems.
However, when more than one system is being scanned, these gaps (caused
by packets that are being sent to different targets) can be easily detected. By
detecting them we can determine how many systems are being targeted
simultaneously.

Furthermore, when the scanner software generates fake decoy packets
that appear to come from random hosts, it is possible to eliminate spoofed
addresses—ones that were made up using PRNG (and thus match its possible
output) and determine which one does not match and hence must be real—
pointing conclusively to the real perpetrator of an attack. For example, if our
reconstructed PRNG data shows traffic coming from addresses such as:

198.187.190.55 (decimal representation: 3334192695)

195.117.3.59 (decimal representation: 3279225659)

207.46.245.214 (decimal representation: 3475961302)

we can determine that both 3334192695 and 3475961302 were one of the
first outputs we would see of a generator seeded with S0; whereas 3279225659
does not seem to be any of the first outputs of a reconstructed PRNG and
hence is likely a real address.

We can use all this information to determine an attacker’s intentions
and the software they are using. We can even use it to track the system they
are working on, correlate it with other data to determine their true identity
and geographical location, and sometimes even determine how they are
using their computer as the scan progresses.

NOTE NMAP, in response to the uptime and scan history disclosure problems discussed above,
attempts to use secure system RNG facilities (such as /dev/random, as discussed in
Chapter 1) to generate random numbers instead of relying on standard C library tools.
However, this method is not available on many operating systems (such as Windows),
and other scanners have not taken similar steps to defend an attacker.

Protecting Yourself: Observing Observations

The Internet has become a giant battlefield in the last ten years. Newly
connected machines are being instantly flooded with automated attack
probes, worms, and other types of information that stress their security.
The traditional, and now fairly trendy, intrusion detection and prevention
movement aims to find out about and stop attacks, by warning the admin-
istrator when pre-attack probes are being carried out using specially crafted
traffic analysis tools. In heterogeneous or simply sufficiently complex
environments, these often produce more noise and false positives than
one can handle.
The Benef i t s of Being a Vict im 223

In some cases, however, the ability to observe attacks and the responses
they trigger is a great way for the administrator to learn about network
problems and attacks as they occur (even though those incidents themselves
are hardly noteworthy, usually). For one thing, in some networks, active
discovery and asset scanning to ensure policy compliance and system
configuration is difficult to initiate or too troublesome to perform, whether
due to policy regulations, slow turnaround times, rarely open network
maintenance windows, and so forth. In such an environment, the ability to
peek and determine what rogues are seeing may be an invaluable substitute
for locally initiated active reconnaissance.

Too, periodic active discovery might not be fast enough to respond to
certain threats; thus, the ability to learn that something has suddenly gone
wrong by merely observing the results others get could be quite valuable.
And, of course, this is a two-edged sword—a hacker who has compromised or
plans to compromise a network, but wants to keep a low profile and plan
their steps in advance, can watch traffic generated by other discovery
attempts in order to build their knowledge about a particular system.

The task of stealing knowledge acquired by an attacker appears to be
simple only in theory; the challenge of correlating and processing results,
particularly when analyzing large environments or when based only on
partial information from separate attack attempts from different locations, is
not trivial. Some tools to facilitate network and system mapping using
“passive scanning” are nevertheless slowly showing up on the horizon—with
Preston Wood’s DISCO2 being a prime example.

Food for Thought

I find it strange that the techniques described in this chapter are often not
supported by comprehensive research, published white papers, or readily
available tools. With the attack tracking craze initiated by Lance Spitzner’s
honeypot research, and only fueled by products such as intrusion detection
systems, one would expect to see fewer efforts to identify attacks (which are
usually not particularly exciting themselves and which typically use well-
documented vectors and flaws) and more attempts to determine the intent
and origin of an attack and to correlate events that are meaningless alone,
but that can signal a problem when combined.

I can only shed some light on the tip of an iceberg, but needless to say,
this may be one of the more exciting areas to research and contribute to.

And now, for something completely different. . . .
224 Chapter 15

PART IV
T H E B I G P I C T U R E

Our legal department advised us not to say
“the network is the computer” here

P A R A S I T I C C O M P U T I N G ,
O R H O W P E N N I E S A D D U P

Where the old truth that having an army of minions is better
than doing the job yourself is once again confirmed

I hope you’ve enjoyed the ride so far. I’ve discussed a
number of fancy problems that affect the security and
privacy of information from its input at the keyboard
to its ultimate destination hundreds or thousands of
miles away. But it is too early for either of us to throw a
party; something is missing from the picture—some-
thing far bigger than what we have discussed so far.
The dark matter.

The problem with our story so far is simple: communications do not
occur in a void. Although the process of exchanging data is usually limited to
two systems and a dozen or so intermediate ones, the grand context of all
events simply cannot be ignored; the properties of the surrounding environ-
ment can shape the reality of a chitchat between endpoints in profound
ways. We cannot ignore the relevance of systems that are not directly
involved in communications or the importance of all the tiny, seemingly

isolated bits of individually trivial events that data meets along its path. It can
be fatal to focus only on what appears relevant to a specific application or a
particular case, as I hope this book has shown you thus far.

Rather than fall into this shortsighted trap, I’ve chosen to embrace the
grand scheme of things in all its glory. Thus, the fourth and last part of this
book focuses exclusively on the security of networking as a whole and
discusses the Internet as an ecosystem, instead of a collection of systems
accomplishing specific tasks. We pay tribute to the seemingly inert matter
that binds the world together.

This part of the book begins with an analysis of a concept that appears to
be the most appropriate way to make the transition. For many computer
geeks, this concept, called parasitic computing, has revolutionized the way
we think of the Internet.

Nibbling at the CPU

A humble research paper published in letters to Nature by Albert-Laszlo
Barabasz, Vincent W. Freeh, Hawoong Jeong, and Jay B. Brochman in 20011
could easily have gone unnoticed. At first glance, this letter did not seem
worthy of much attention; in fact, it posed a seemingly laughable proposition.
The authors suggest that traffic could be created within well-established
network protocols such as TCP/IP that would pose (as a message) a trivial
arithmetic challenge—a problem to be solved—to a remote computer; the
remote system would unwittingly solve the problem while parsing the message
and preparing a response. But why would anyone waste time casting riddles at
emotionless machines? What could one gain from this? Wouldn’t it be as much
fun to solve them yourself? Of course, the answer is quite interesting.

First, there is a business to solving puzzles with a computer: much of
today’s cryptography is based on the relative difficulty of solving a set of so-
called non-deterministic polynomial* (NP) problems. NP-complete problems
seem to take pleasure in crashing every codebreaker’s party at the least
opportune times. The ability to solve them efficiently—whether with
enormous computing power, clever algorithms, or both—would likely take a
lucky inventor one step closer to world domination. There’s the incentive,
then, but how would one do it?

The method proposed in the research is quite novel. The paper first
states that many NP problems in mathematics can be easily expressed in
terms of Boolean satisfiability (SAT) equations. SAT equations represent

* In complexity theory, polynomial problems can be solved by a Turing machine in time that is
polynomially proportional to input length (number or size of variables for which the answer
must be found). This means that the time needed to solve a polynomial problem corresponds
directly to the input length raised to a constant exponent, which can be zero (causing the time
not to depend on input length at all, as with testing for parity). Non-deterministic polynomial
(NP) problems have no known solutions of this nature and may require dramatically more time
to solve as the input length increases, exhibiting, for example, exponential dependency. A
subset of NP problems, known as NP complete, are proven to have no polynomial time
solutions. NP problems are generally regarded as “hard” for nontrivial inputs, whereas P
problems are less expensive to solve.
228 Chapter 16

these problems as Boolean logic operations, effectively constructing a
sequence of parameters and variables (a Boolean formula). A classic
example of an SAT formula might be

P = (x1 XOR x2) AND (~x2 AND x3)

Here, P is the formula (problem) itself, and x1to x3 are binary inputs, or
parameters.

Although there are 23 possible combinations of values for x1, x2, and x3,
only one of them makes P true: x1 = 1, x2 = 0, x3 = 1. Hence, we say that only
this triplet is a solution to P. Finding solutions to SAT problems boils down
to determining a set of values for all variables in the equation, for which the
whole formula that incorporates those variables has a logic value of truth.
Although trivial SAT problems like the one shown earlier are easy to solve,
even without invoking any solving mechanism other than trial and error, more
complex multivariable cases are indeed NP complete, and, consequently,
other NP problems can be reduced to SAT problems in polynomial (meaning
sane) time.

And here lies the problem. We can formulate a hard NP problem in
terms of SAT, but this does not buy us much. As of this writing, when it
comes to a non-trivial equation, even the best SAT-solving algorithms
known aren’t much more effective than a brute-force search whereby
all possibilities are tried, and the value of the formula is evaluated for
each possibility. This means that if we have a SAT problem and enough
computing power to even consider approaching it, attempting a solution
using brute force is not such an insane approach, and we would not get
much further by with a more sophisticated one. Anyway, there’s not much
to lose by trying.

And here’s the revelation that binds SAT problems and TCP/IP net-
working. The basic observation made by the researchers is fairly obvious (or
should be, if you subscribe to Nature): the checksumming algorithm of TCP
(or IP), as discussed in Chapter 9, although in principle designed for a
wholly different purpose than solving equations, is nothing more than a set
of Boolean operations subsequently performed on bits of the input message.
After all, at the low level, the algorithm boils down to pure Boolean logic
carried out on words of the transmitted packet. They conclude that, by
providing specific contents of the packet (“input”), the remote system can
thus be forced to carry out a set of arithmetic operations and then evaluate
its correctness—its agreement with the checksum declared in the TCP or IP
header.

Although the operation performed by the remote system during the
checksumming process is in every single iteration exactly the same, it has a
functionality sufficient to serve as a universal logic gate, a mechanism we
remember from Chapter 2. By interleaving the actual tested input with
carefully chosen “control” words that invert or otherwise alter the partial
checksum computed thus far, it is possible to carry out any Boolean
operation.
Paras i t ic Comput ing, or How Pennies Add Up 229

This, in turn, means that SAT logic can be easily re-created using a
specific sequence control and “input” bits in a packet once the data is
exposed to a checksumming algorithm; equation variables (chosen this or
the other way) are interleaved with fixed words that are used to transmogrify
the current checksum value so that the outcome of the next operation
mimics a specific Boolean operator. The final result—the value to which a
packet sums—denotes the final outcome: the logic value of a formula to be
evaluated.

Thus, the satisfiability test is quite accidentally carried out by the remote
recipient when, upon arrival, it attempts to validate the checksum. If the
checksum comes out as 1 (or as some other value that in our SAT compu-
tation system corresponds to an SAT statement evaluating true), it passes the
satisfiability test for the variable values chosen for this particular packet (and
the traffic is passed to higher layers and acted upon). If the checksum fails,
the formula has not been satisfied, and the packet is dropped silently. In
other words, if our input bits denoted a specific hypothesis, the recipient had
either verified it or proved it wrong, taking different actions depending on
the outcome.

Further, a party wanting to solve an SAT problem quickly can prepare a
set of all possible combinations of variable values (inputs) for a given formula,
interleave it with information that causes the inputs to combine with others
in the most desirable way, stuff this information into TCP packets, and send
them out (nearly in parallel) to a large number of hosts around the globe.
The checksum for a packet would be set manually to a value we know the
“hypothesis” would produce if proven true, instead of actually calculating it.
Only hosts that receive packets with variable values for which the formula
evaluates to the desired value would respond to the traffic; other systems
would simply disregard such traffic as corrupted due to the checksum
mismatch. The sender can thus determine the correct solution without
performing massive computations and can simply look up the set of values
used in packets sent to those hosts that replied to a request.

The research goes further and reports on a successful attempt to solve an
NP problem using real-world hosts across the globe, thus providing not only
theoretical background, but also actual confirmation of the approach.

The impact of this technique is quite subtle, but also important: it
proves that it is possible to effectively “outsource” computations to unaware
and unwilling remote parties on the network, including sets of operations
needed to solve real-world computing problems, without actually attacking
these systems, taking them over, installing malicious software, or otherwise
interfering with legitimate tasks. One person can thus, effectively, divide
a specific computational task among a large number of systems. In the
process, they can consume only a tiny and negligible fraction of a system’s
computing power that could nevertheless add up to the equivalent of a
decent supercomputer, when millions of systems work on a problem
together.

World domination at hand? Not so fast.
230 Chapter 16

Practical Considerations

. . . or, perhaps, not just yet. The approach suggested in the aforementioned
research is revolutionary and interesting, but not necessarily a particularly
practical way to build a supercomputer by stealing from the rich. The amount
of bandwidth needed to sustain a reasonable computing rate, and the amount
of computations needed to prepare trivia for other systems to solve, is quite
high. As a result, this scheme is not efficient enough to outsource the solving
of complex mathematical problems to a global supercluster of unwilling
victims.

In the scheme outlined earlier, the requirement of exponential com-
puting power is exchanged for the requirement of exponential bandwidth.
This is not necessarily a decent trade-off, particularly because only relatively
simple tests can be pushed out, considering the packet size limitations of
most networks. (All of them could likely be solved in the time it takes to
transmit this data over Ethernet.) This technique proves that the attack is
possible and provides a truly universal venue to facilitate it, but using more
specific attack scenarios might yield much more useful results.

Other ways of stealing negligible amounts of individual computing power
are perhaps more interesting as ways to achieve impressive computing
power at a low cost. For example, certain types of client software (such as web
browsers) can be easily used to execute even fairly complex algorithms in a
relatively trivial way. One such example, a “Chinese lottery” computing
scheme detailed in RFC 3607,2 is used by a tiny Java applet that Jean-Luc
Cooke’s md5crk.com website encourages webmasters to add to their web
pages. Once this applet is added to a site, every visitor to it can execute the
applet on their system, borrowing a negligible amount of CPU cycles in
order to contribute them to a project aimed at finding MD5 shortcut func-
tion collisions. (Collisions are two different messages that produce the same
shortcut. They are elusive and anecdotal, although most definitely possible,*
beings that can allow us to better understand the weaknesses of shortcut
functions and could empirically prove and demonstrate that MD5 is too weak
to be a match for today’s computers.)

Java applets are small pieces of machine-independent programs that are
by default executed by web browsers in special, restricted “sandbox” environ-
ments. They have no access to local disk storage and (only in theory) no
ability to do any harm, though they can use limited network connectivity to
perform computations and to add certain visual elements to a web page.
They are most commonly used to enhance websites with additional features,
such as interactive games, visual effects, and so on. But Jean-Luc used these

* While this book was being prepared for printing, a team of Chinese researchers from Shandong
University—Xiaoyun Wang, Dengguo Feng, Xuejia Lai, and Hongbo Yu—advised of a technique
for finding and provided samples of MD4, MD5, HAVAL-128, and RIPEMD-128 collisions. This
is one of the more important bits of news in modern cryptography, and confirmation that those
functions are inadequate for some security-related applications. While the md5crk.com project
has closed down, its contributions to exploring the field of parasitic computing remain valid.
Paras i t ic Comput ing, or How Pennies Add Up 231

applets to do something else: to find likely candidates for collisions using the
joint computing power of hundreds or thousands of systems around the
world, simultaneously.

The principle behind the applet’s operation was trivial: The applet was
executed on client systems worldwide whenever a cooperating website was
visited; then, once launched, the applet tried to calculate MD5 shortcuts for
different randomly chosen messages. This continued until a shortcut that
matched a certain arbitrarily chosen and fixed masking pattern was found.
Such a pattern could be “any shortcut with zero for the last four bytes” or
something similar. The pattern was chosen so that it does not take too long
to find a suitable shortcut by trial and error (so that the person does not have
to leave the web page and stop the code before it is found), but so that only a
small fraction of all possible shortcuts would match the rule.

Once a suitable message was found, the program “phoned home” with
the candidate. The author could then examine the submissions. The applet
had already examined and rejected a number of collision candidates, and
only submitted those that matched a predefined condition (ones that were
partly identical). Because much less variation is possible in the data collected
this way, the likelihood of a collision in a chunk of n entries is considerably
higher than for purely random data. By analogy, the likelihood of running
into two visually indistinguishable apples in an amount of fruit we are capable
of going through within one day is higher if we order for delivery only those
apples that have nearly the same weight and color, as opposed to purchasing a
wagon of arbitrary fruit.

Although somewhere in the gray area of cyber-ethics, this ingenious
approach first openly deployed by md5crk.com really worked and provided a
good demonstration of how parasitic computing can be both quite effective
and stealthy. It appears that the ability to steal processor cycles originally
intended to be used for “rightful” purposes is well within reach, and perhaps
used more often that we want it to be. And this possibility is here to stay.

But, a cranky skeptic continues, can parasitic computing do more than
just nibble tiny bits of CPU power to facilitate cracking encryption schemes, a
task few of us are truly interested in?

Parasitic Storage: The Early Days

When you shout, acoustic waves move through the air, gradually losing
energy and dispersing in all directions. However, if they encounter a solid
obstacle along the way they will likely bounce, and, if the angle is just right,
they will bounce back to you. The audible result is that a split second after
shouting you will hear an echo of your own voice.

But what happens when an information theory geek reads their code
aloud standing on the top of a mountain, directing their words toward a
rocky valley? I thought you’d never ask. In such case, they cannot help but
make a clever observation: if they read it fast and then immediately forget
about what they just recited (because they become preoccupied with other
232 Chapter 16

matters), they can still eventually recover the information he when it
bounces back off the bottom of the valley and is echoed back. Voilà—a
convenient data storage mechanism.

Sounds ridiculous? Maybe we are just too young. Early types of computer
memory modules used a similar acoustic technique that allowed the processor
to store some information “offline” and recover it later. Instead of using air
(through which waves spread a bit too fast to provide reasonable storage
capacities without building extremely large memory units), a mercury-filled
drum was used (an environment in which acoustic waves propagate much
more slowly). The principle remained the same, however, and even gave an
interesting meaning to the term memory leak. Such a device, mercury delay line
memory, was used, for example, in the famous UNIVAC I.*

Naturally, this slow, bulky, dangerous, and inconvenient sort of memory
was dropped in favor of other solutions as soon as the technology matured.
However, the invention itself had some charm to it, and wouldn’t fade into
oblivion that easily. A short presentation by Saqib A. Khan at the DefCON
conference in Las Vegas in 2002 revived it and gave us the first hints about
how to use the properties of a large-scale network to construct similar types
of momentary storage using the Internet as a medium. But this time, the
description of acoustic memory did not sound ridiculously primitive, but
rather unbelievably cool to all hackers and geeks watching this short slide
show. Acoustic memory had made its comeback in style.

Because the round-trip times for packets (the time needed for a
message to arrive at a remote system, and for a response to come back)
are nonzero, a certain amount of data can always be kept “on the wire”
by repeatedly sending out and receiving portions of it and waiting for it
to echo back. Saqib used ICMP (Internet Control Message Protocol)
“echo request” (ping) packets to achieve this effect; most systems on the
Internet respond to such packets with “echo reply,” quoting the original
payload they received.

This seemed like a cool trick. However, it was also far from practical for
any reasonable application, because it required frequent retransmissions of
portions of data. Because ICMP “echo reply” is sent back nearly immediately
after the “echo request” is received, only a small amount of data could be
pushed out before being sent back and needing to be recovered off the wire.
As a result, the amount of data that could be stored this way could be no
larger than the amount that the user could push out in, at best, a couple of
seconds (and more commonly, under a tenth of a second).

Ah, but parasitic storage could be improved.

* Perhaps it is worth noting that a low-capacity, analog delay line memory was also used in early
implementations of SECAM (Séquentiel Couleur avec Mémoire, or Sequential Color with
Memory) TV receivers. Unlike NTSC or PAL, the SECAM signal uses a reduced color resolution;
red and blue chrominance components are transmitted alternatively, never both at once. The
other component must be taken from the preceeding line to determine how a specific pixel
should look. To make this possible, a memory device needed to be implemented.
Paras i t ic Comput ing, or How Pennies Add Up 233

Making Parasitic Storage Feasible

In 2003, Wojciech Purczynski and I coauthored a paper called “Juggling with
Packets: Parasitic Data Storage.” We took the concept of parasitic storage a
bit further and considered a number of methods that could be used to
dramatically extend the Internet’s storage capacity, while conserving the
bandwidth needed to sustain the information. Our research focused on
several other ways to store data on remote systems and classified them based
on the properties of the storage medium (its visibility, volatility, and
reliability). We also included a detailed discussion of the hypothetical
storage capacities for each of the techniques.

The paper was quite short and—I hope—refreshing and humorous, and
it’s included here.

==
 Juggling with packets: floating data storage
==

 "Your dungeon is built on an incline. Angry monsters can't play marbles!"

 Wojciech Purczynski <cliph@isec.pl>
 Michal Zalewski <lcamtuf@coredump.cx>

1) Juggle with oranges!

 Most of us, including the authors of this paper, have attempted to juggle
with three or more apples, oranges, or other fragile ballistic objects. The
effect is usually rather pathetic, but most adept juggler padawans sooner or
later learn to do it without inflicting excessive collateral damage.

 A particularly bright juggler trainee may notice that, as long as he
continues to follow a simple procedure, at least one of the objects is in the
air at all times and that he has to hold at most two objects in his hands at
once. Yet, each and every apple goes through his hands every once in a while,
and he can recover it at will.

 After some fun with juggling, he may decide that the entire process is
extremely boring and go back to his computer. While checking his e-mail, an
educated juggler might notice that a typical network service has but one duty:
to accept and process data coming from a remote system and take whatever steps
it deems appropriate based on its interpretation of the data. Many of those
services do their best to behave robustly, to be fault tolerant, and to supply
useful feedback about the transaction.

 In some cases, the mere fact that a service is attempting to process the
data and reply according to protocol can be used in ways that the authors
never dreamed of. One of the more spectacular examples of this, which our
fellow juggler might be familiar with, is research done at the University of
Notre Dame, titled "Parasitic Computing" and published in letters to "Nature."
234 Chapter 16

 Nevertheless, our hero concludes that such attempts are quite impractical in
the real world. The cost of preparing and delivering trivia to be solved far
exceeds any eventual gain since the sender has to perform operations of
comparable computational complexity simply to deliver the request. "The
computing power of such a device is puny!" he says.

 A real juggler would focus on a different kind of outsourced data
processing, one that is much closer to his domain of expertise. Why not
implement a distributed fruit-based data storage? What if I write a single
letter on every orange and then start juggling? I can then store more orange
bytes than my physical capacity (the number of oranges I can hold in my
hands)! How brilliant. . . . But, but, would it work without oranges?

2) The same, without oranges

 This paper is based on the observation that for all network communications,
there is a nonzero (and often considerable) delay between sending information
and receiving a reply--a result of the physical constrains of the medium and
the time it takes to process data on all computer equipment.

Like an orange with a message written on it, a packet used to store a piece
of data travels for a period of time before returning to the source, and for
this period of time we can safely forget its message without losing data. As
such, the Internet has a nonzero momentary data storage capacity, and it is
possible to push out a piece of information and effectively have it stored
until echoed back. By establishing a mechanism for the cyclic transmission and
reception of chunks of data to and from a number of remote hosts, it is
possible to maintain an arbitrary amount of data constantly 'on the wire,'
thus establishing a high-capacity, volatile medium.

 This medium can be used for memory-expensive operations, either as regular
storage or for certain types of sensitive data for which one does not want to
have leave a physical trail on a hard disk or other nonvolatile media.

 Since it is not considered bad programming practice to return as much
relevant information to the sender as the sender sends to the service, and
because many services or stacks maintain a high level of verbosity, our
juggling experience tells us that it is not only possible, but also feasible,
to establish this kind of storage, even over a low-end network hookup. Unlike
traditional methods of parasitic data storage (such as P2P abuse, open FTP
servers, binary Usenet postings, and so on), this particular method may or may
not leave a trail of data (depending on how we implement it), and it does not
put any single system under a noticeable load. Therefore, unlike the
traditional methods, this technique is less likely to be detected and
considered an abuse. Hence, the possibility of the data being intercepted and
purposefully discarded is much less a problem.

3) Class A data storage: memory buffers
--

 Class A data storage uses the capacity inherent in communication delays
during the transmission and processing of live data as it travels across
Paras i t ic Comput ing, or How Pennies Add Up 235

networks between two endpoints. The information stored herein remains cached
in the memory of a remote machine and is not likely to be swapped out to a
disk device.

 Examples of class A memory are a variety of schemes that rely on sending a
message that is known to result in partial or full echo of the original
request, including the following:

 - SYN+ACK, RST+ACK responses to SYN packets, and other bounces

 - ICMP echo replies

 - DNS lookup responses and cache data. It is possible to store some
information in a lookup request and have it bounce back with an NXDomain
reply or to store data in an NS cache.

 - Cross-server chat network message relaying. Relaying text messages
across IRC servers and so on can exhibit considerable latency.

 - HTTP, FTP, web proxy, or SMTP error or status replies.

 The most important properties of class A storage are:

 - Low latency (milliseconds to minutes), which makes it more useful for
near random access memory applications.

 - Lower per-system capacity (usually kilobytes), which makes it less
suitable for massive storage.

 - Only one chance to receive or few retransmits which make it less
reliable in case of a network failure.

 - Lower likelihood of permanent recording. The data is not likely to be
stored on a nonvolatile medium or swapped out, increasing privacy and
deniability.

 In particular, when using higher-level protocols, additional features appear
that might solve some of the low-capacity and short- recovery window problems
shared by various types of class A storage. For example, it is possible to
establish a connection to a service such as SMTP, FTP, HTTP, or any other
text-based service and send a command that is known to result in an
acknowledgment or error message being echoed along with part of the original
data. We do not, however, send a fully formatted message; we leave some
necessary characters unsent. In most cases, end-of-line characters are
required in order to complete the command. In this state, our data is already
stored on remote service waiting for a complete command or until connection
time-out occurs. To prevent time-outs, either on TCP or at the application
level, no-op packets need to be sent periodically. A \0 character interpreted
as an empty string has no effect on many services but is sufficient to reset
TCP and service time-out timers. A prominent example of an application
vulnerable to this attack is Microsoft Exchange.
236 Chapter 16

 The attacker can sustain the connection for an arbitrary amount of time,
with a piece of data already stored at the other end. To recover the
information, the command must be completed with the missing \r\n, and then the
response is sent to the client.

 A good example is the SMTP VRFY command:

 220 inet-imc-01.redmond.corp.microsoft.com Microsoft.com ESMTP Server
 Thu, 2 Oct 2003 15:13:22 -0700
 VRFY AAAA...
 252 2.1.5 Cannot VRFY user, but will take message for
 <AAAA...@microsoft.com>

 It is possible to store just over 300 bytes, including nonprintable
characters, this way--and have it available almost instantly. More data can be
stored if the HTTP TRACE method is used with data passed in arbitrary HTTP
headers, depending on the server software. Sustained connections can give us
arbitrarily high latency, thus creating large storage capacity.

 This type of storage is naturally more suited for privacy-critical
applications or low-latency lower to medium capacity storage (immediate RAM-
extending storage for information that should leave no visible traces). The
storage is not suitable for critical data that should be preserved at all
costs, due to the risk of data being lost on network failure.

4) Class B data storage: disk queues

 Class B data storage uses "idle" data queues that store information for an
extended period of time (often on the disk). For example, MTA systems can
queue e-mail messages for as many as 7 days (or more, depending on the
configuration). This feature can give us a long delay between sending data to
store on the remote host and receiving it. Because a typical SMTP server
prevents the relay of e-mail from the client to itself, e-mail bounces can be
used to have data returned after a long period of time.

 For example, consider this potential attack scenario:

 1. The user builds a list of SMTP servers (perhaps servers that provide a
reasonable expectation of being beyond the reach of their foes).

 2. The user blocks (with block/drop, not reject) all incoming connections to
their port 25.

 3. For each server, the attacker has to confirm its delivery time-outs and
the IP from which the server connects back while trying to return a
bounce. This is done by sending an appropriate probe to an address local
to the server (or requesting a DSN notification for a valid address) and
checking to see how long the server tries to connect back before giving
up. The server does not have to be an open relay.
Paras i t ic Comput ing, or How Pennies Add Up 237

 4. After confirming targets, the attacker starts sending data at a pace
chosen so that the process is spread evenly over the period of one week.
The data should be divided so that there is one chunk per each server.
Every chunk is sent to a separate server to immediately generate a bounce
back to the sender.

 5. The process of maintaining the data boils down to accepting an incoming
connection and receiving the return at most a week from the initial
submission, just before the entry is about to be removed from the queue.
This is done by allowing this particular server to go through the
firewall. Immediately after the chunk is received it is relayed back.

 6. To access any portion of data, the attacker looks up which MTA is holding
this specific block and then allows this IP to connect and deliver the
bounce. Three scenarios are possible:

 - If the remote MTA supports the ETRN command, the delivery can be
induced immediately.

 - If the remote MTA was in the middle of a three-minute run in an attempt
to connect to a local system (keeps retrying thanks to the fact its SYN
packets are dropped, not rejected with RST+ACK), the connection can be
established in a matter of seconds.

 - Otherwise, it is necessary to wait from five minutes to one hour,
depending on the queue settings.

 This scheme can be enhanced using DNS names instead of IPs for users on
dynamic IP or to provide additional protection (or when it is necessary to cut
the chain immediately).

 The important properties of class B storage are:

 - High per-system capacity (megabytes), making it a perfect solution for
storing large files and so on

 - Higher access latency (minutes to hours), likening it to a tape device,
not RAM (with the exception of SMTP hosts that accept the ETRN command
to immediately reattempt delivery)

 - Very long lifetime, increasing per-user capacity and reliability

 - Plenty of delivery attempts, making it easy to recover the data even
after temporary network or hardware problems

 - Likely to leave a trace on the storage devices, making it a less-useful
solution for fully deniable storage (although it would still require
examining a number of foreign systems, which does not have to be
feasible)
238 Chapter 16

 Class B storage is suitable for storing regular file archives, large append-
only buffers, encrypted resources (with a proper selection of hosts, it
remains practically deniable), etc.

5) Discreet class A storage

 In certain situations, it might be necessary to devise a solution for
discreet data storage that does not reside on the machine itself and that
makes it possible to deny the presence of this information anywhere.

 The basic requirement is that the data is:

 - Not returned until a special key sequence is sent

 - Permanently discarded without leaving any record on any nonvolatile
storage media in the absence of keep-alive requests

 It is possible to use class A storage to implement this functionality using
the sustained command method discussed earlier. The proper TCP sequence number
is necessary to release the data, and until this sequence is delivered, the
data is not returned or disclosed to any party. If the client node goes
offline, the data is discarded and likely overwritten.

 The sequence number is thus the key to the stored information, and, if the
lifetime of the data is fairly short when keep-alive \0s stop coming, it is
often adequate protection.

6) User-accessible capacity

 In this section, we attempt to estimate the storage capacity available to a
single user.

 In order to maintain a constant amount of data "outsourced" to the network,
we must be able to receive and send it back on a regular basis.

 The amount of time that data can be stored remotely is constrained by the
maximum lifetime Tmax of a single packet (including packet queuing and
processing delays). The maximum amount of data that can be sent is limited by
maximum available network bandwidth (L). Thus, the maximum capacity can be
defined as:

 Cmax [bytes] = L [bytes/second] * Tmax [seconds] / Psize * Dsize

where:

 Dsize - The size of a packet required to store an initial portion of data
on a remote host
Paras i t ic Comput ing, or How Pennies Add Up 239

 Psize - The size of a packet required to sustain the information stored on
a remote host

 Psize and Dsize are equal and thus can be omitted whenever the entire chunk
of data is bounced back and forth; they differ only for "sustained command"
scenarios. The smallest TCP/IP packet to accomplish this has 41 bytes. The
maximum amount of data that can be sustained using HTTP headers is about 4096
bytes.

 That all, in turn, gives us the following chart:

 Bandwidth | Class A | Class B
 -----------+---------+---------
 28.8 kbps | 105 MB | 2 GB
 256 kbps | 936 MB | 18 GB
 2 Mbps | 7.3 GB | 147 GB
 100 Mbps | 365 GB | 7 TB

7) Internet as a whole

 In this section, we attempt to estimate the theoretical momentary capacity
of the Internet as a whole.

 Class A

To estimate the theoretical class A storage capacity of the Internet, we
assume the following:

 - ICMP messages offer the best balance between storage capacity and
preserving a remote system's resources.

 - An average operating system has a packet input queue capable of
holding at least 64 packets.

 - The default PMTU is approximately 1500 (the most common MTU).

As an estimate of the number of hosts on the Internet we use an ISC survey
for 2003, which lists 171,638,297 systems with reverse DNS entries
(although not all IPs with reverse DNS have to be operational). To take
this into account, we used the ICMP echo response ratio calculated from
the last survey that performed such a test (in 1999). The data then
suggested that approximately 20 percent of visible systems were alive,
which, in turn, sets the number of systems ready to respond to ICMP
requests at roughly 34,000,000.

By multiplying the number of systems that reply to ICMP echo requests by
the average packet cache size and maximum packet size (minus headers), we
estimate the total theoretical momentary capability for class A ICMP
storage to be approximately 3 TB.
240 Chapter 16

 Class B:

To estimate theoretical class B storage capacity, we use the example of
MTA software. There is no upper cap for the amount of data we feed to a
single host. Although it is safe to assume that only messages under
approximately 1 MB will not cause noticeable system load and other
undesirable effects, we assume that the average maximum queue size is
500 MB.

Our own research suggests that roughly 15 percent of systems that respond
to ping requests have port 25 open. We thus estimate the population of
SMTP servers to be 3 percent (15 percent of 20 percent) of the total host
count, or just over 5,000,000 hosts.

This gives a total storage space capacity of 2500 TB.

Applications, Social Considerations, and Defense

But what now? What is the benefit of having practical parasitic computing
and storage schemes, if the benefits are still not nearly good enough to make
it a tempting alternative to just getting more hardware?

Despite advances in the practical exploitation of parasitic computing,
applications that aim to extend the sheer computing power or storage space
of a traditional system may appear pointless when we consider the abun-
dance of cheap memory and gigahertz processors.

The unseen potential of this technology may, however, lie in a wholly
different set of applications: volatile computing. The ability to build usable
distributed computers that can disperse at will, leaving no physical traces and
storing no meaningful data at any one location, might be a powerful privacy
tool and also pose some challenges for forensics and law enforcement. The
ability to build volatile store-and-keep memory that collapses shortly after
taking a single node offline, but that does not involve frequent retrans-
missions of data, might provide a good level of deniability for an offender (or
an oppressed entity, for that matter) and require many common evidence
collection procedures to change quite dramatically.

Furthermore, imagine volatile systems that could, once bootstrapped
and initialized, sustain themselves for extended periods of time, living in the
Internet and taking no localized physical presence. Two designs are possible
for volatile, distributed computer systems, and neither is that absurd:

 Systems can be designed so that they complete a complex task by finding
a solution in parallel (already largely accomplished by the SAT comput-
ing scheme discussed previously). The disadvantage of such systems is
that the computation result must be retrieved and the next iteration of
processing must be initiated manually by occasionally “reseeding” the
entire system from some location. Solutions that rely on low-level proper-
ties of protocols such as TCP would likely fall into this category.
Paras i t ic Comput ing, or How Pennies Add Up 241

 Systems can be designed so that they execute subsequent iterations of
distributed computing themselves. All types of abuse of higher-level fea-
tures (such as embedded document-rendering algorithms) and of some
network services might be used to facilitate this type of activity.

In each case, the consequences can be quite profound. For example,
how do you take down a redundant self-repairing machine that uses no
single system, but rather borrows tiny bits of memory and processing power
from others for fractions of a second—and uses no vulnerabilities to do so or
clearly distinguishable traffic that can be filtered out? And isn’t it also a bit
disconcerting to realize that we would not be able to immediately discern the
goals of such a distributed computer? Bowing respectfully to the masters of
bad science fiction, I believe the domination of computers is imminent and
want to welcome our new machine overlords.

Food for Thought

Defense against parasitic computing is generally extremely difficult. The
ability to store data or to cause the other party to perform certain trivial
computations is often bound to the fundamental functionality of network
protocols. This is a characteristic that we cannot conceive of removing
without wiping out the Internet as we know it and introducing a host of new
problems more serious than the one remedied.

Protecting a single system against becoming a node for parasitic com-
puting is also fairly difficult, because the number of resources stolen from a
system is often a negligible fraction of the idle CPU time and memory and,
hence, might easily go unnoticed.

Chances are good that parasitic computing has yet to show its full
potential and that the threat—irrelevant or nonexistent for single systems
but significant for the net as a whole—is here to stay.
242 Chapter 16

T O P O L O G Y O F T H E N E T W O R K
On how the knowledge of the world around us may help

track down friends and foes

What is the shape of the Internet? No committee
oversees it or decides where, how, and why it should
expand or how new and existing systems should be
organized or managed. The Internet grows in all
directions in ways that are equally driven by demand,
economics, politics, technology, and blind luck.

Yet the Internet is not a shapeless blob: there are planned, locally
governed hierarchies of autonomous systems, with core routers surrounded
by lesser nodes, with links configured by automatic mechanisms or carefully
designed by humans. The Internet is a spectacular mesh, a complex and
fragile cobweb covering the entire industrialized and developing world. The
task of capturing this ever-changing topology appears challenging, but also
tempting, especially when we realize how we can benefit from the
information collected.

In this chapter, I’ll first discuss two notable attempts to map the Inter-
net’s topology, and then I’ll moralize once more on the potential uses for the
information gathered this way to do things that our ancestors could not even
dream of.

Capturing the Moment

The most comprehensive attempt to map the Internet was undertaken by the
Cooperative Association for Internet Data Analysis (CAIDA), an organization
funded, among others, by federal research agencies (NSF, DHS, DARPA)
and the industry (Cisco, Sun). The organization was formed to come up with
traffic and infrastructure analysis and tools for the common benefit of the
Internet community, in hopes of making it better, more reliable, more
resilient, and more robust.

Since 2000, one of CAIDA’s flagship public projects has been the creation
and maintenance of the autonomous system core network map (aka “Skitter”).
As of this publication, their most recent capture represents data for 12,517
major autonomous systems, corresponding to 1,134,634 IP addresses and
2,434,073 links (logical paths) between them.

Despite sounding astonishingly arcane, the CAIDA Internet map was
created with only publicly accessible router BGP configuration data, empirical
network testing results (traceroute), and WHOIS records for network blocks.
This map is organized using polar coordinates. Points representing each
system are located at an angle corresponding to the physical location of a
network’s declared headquarters location and the radius corresponding to
the “peering relevance” of this particular autonomous system. The latter
parameter is derived by calculating the number of other autonomous systems
observed to accept traffic from this particular node. Thus, massive core systems
are located toward the center of the map, whereas systems that have direct
contact with only a couple of nodes are located near the outer perimeter.
Lines in the graph simply correspond to peering relations between routers.

NOTE Quite regrettably, we were not allowed to use a graphical representation of CAIDA Skit-
ter graphics in the book free of charge. I encourage you, however, to see this stunning
picture online at http://www.caida.org/analysis/topology/as_core_network/pics/
ascoreApr2003.gif where it is available to the general public at no cost.

Another noteworthy attempt to map the network used an approach that
relied on analyzing distances to various networks, as seen from a particular
location (in this case, from Bell Laboratories), to build a treelike structure
quite unlike the complex mesh created by CAIDA. Conducted by Bill Cheswick
in 2000,1 this analysis resulted in the map shown in Figure 17-1. This structure
does not parametrize the graph depending on the physical or administrative
location of a system; the relative distance from the center corresponds to the
number of hops between that node and Bell Labs, however.

Although the two attempts appear to involve massive data collection and
analysis, it is not prohibitively difficult for an amateur to attempt to map the
network on even a fairly low-end link. Probing all publicly routable subnets
with a single packet might require generating only a couple of gigabytes of
traffic—the equivalent of a couple of hours to one day on a typical DSL
connection. The only risk is that of upsetting some system administrators,
but with the proliferation of computer worms and automated attacks, very
244 Chapter 17

few have a sensitivity threshold that low. Mapping the observed structure of
the Internet is possible, and it can be rewarding, especially because it can tell
us a lot about how the worldwide network is organized.

Figure 17-1: Bill Cheswick’s map of the Internet

But, as it turns out, the data, such as the information acquired by CAIDA,
Bill Cheswick, or just about any proficient user of the Net, can also be
successfully used to better understand the nature and better examine the
origin of a mysterious traffic we might one day stumble upon.

Using Topology Data for Origin Identification

Spoofed traffic is one of the Internet’s major problems—or, at the very least,
one of its more annoying woes. Blindly spoofed packets with bogus or
specially chosen but deceptive source addresses can be used to abuse trust
relationships between computers, inject malicious contents (such as
Topology of the Network 245

unsolicited bulk mailings) without leaving conclusive traces and legitimate
origin information, and so forth. Blind spoofing can also be used to hide the
identity of an attacker conducting system probes (“decoy scanning” discussed
earlier in Chapter 13). The worst plague of all is, however, spoofing used to
carry out Denial of Service (DoS) attacks.

In a typical DoS attack, the administrator is given a chance to see the
origin of malicious traffic directed against one of their services (and
presumably intended to bring it down and cause inconvenience or loss to the
operator). It is possible to randomly spoof offending packets, however, and
in such cases the administrator is left helpless, unable to filter out the traffic
coming from the attacker without cutting off other users. Their only hope is
to work with the upstream provider to investigate the actual origin of the
traffic on the link layer and pass the information to the offender’s ISP; this,
however, takes time, and lots of it. It also requires convincing all parties,
without a court order, that the case is worthy of investigation (and their time
and money). This situation makes it particularly important for the system
administrator to be equipped with tools and methods to differentiate
between spoofed and legitimate traffic.

When I used to live and work in the United States (I live in Poland these
days), my colleague Mark Loveless decided to implement an idea originally
proposed by Donald McLachlan: He would measure time to live (TTL) on
network traffic between him and the presumed sender of a packet to
automatically determine whether an incoming packet had been spoofed.
The challenge of identifying the origin of a network packet in a world where
the information cannot be trusted is important, and the ability to do so, even
if only in a specific subset of cases, would greatly benefit many analytic and
administrative tasks, for the reasons mentioned earlier.

To understand Donald and Mark’s idea, consider that the remote system,
from which we are seeing traffic, is at a specific logical distance from us, sepa-
rated by a given number of network devices. Thus, all packets legitimately sent
by this system exhibit a certain TTL on arrival, corresponding to the default
initial TTL configured on that system, minus the number of intermediate
systems the packet has gone through (as discussed in Chapter 9). However, for
spoofed traffic that presumably originates on a wholly different network, the
initial TTL and the distance is most likely different than the aforementioned
observation would suggest. Mark’s tool, despoof,2 compares the TTLs observed
on specially induced and previously received traffic in order to distinguish
between legitimate and falsified traffic.

However, although this method might work well in individual cases when
used against unsuspecting attackers, at least two problems are associated
with it:

 A paranoid attacker can measure distances before the attack and choose
a TTL that matches the expected value. Although possible, this trick is a
bit difficult to implement. For one thing, the attacker might be physically
unable to set TTL high enough to achieve a specific value that would
match the expected value of a real packet once the packet reaches its
246 Chapter 17

destination. This attacker’s plan could be thwarted if the system that he
is trying to impersonate uses a default TTL at or near 255 (the maximum
possible) and he is farther from the target than the system he is trying to
impersonate (hence it is very much impossible for him to send a packet
that would, upon arrival at the destination, have the desired TTL). Of
course, few systems use the highest possible TTL, and it is rare for an
attacker to want to impersonate a specific system to begin with.

The attacker’s second challenge is that he might not be able to
determine the exact distance between his victim and the impersonated
system if he is nowhere near them and does not know the routing
specifics between these hosts. But if the victim uses despoof to dynami-
cally implement filtering rules to cut off malicious packets, the attacker
might just try various TTLs from various sources until he sees that the
victim is no longer capable of making the distinction. (This would be
obvious: the system targeted would begin to exhibit the effects of a
successful attack, such as a performance impact.)

 Each time a suspicious packet is received, the recipient must start an
investigation and then wait for the results to arrive. This makes it
impractical to use despoof as a basis for an automatic defense, especially
in response to DoS attacks. However, this method is still quite useful for
determining the actual origin of a “decoy scan.”

Without the knowledge of a specific network’s topology, it is difficult to
do any better than with despoof; the TTL analysis technique implemented by
this tool is good enough to recognize and stop many common probes and
individual attacks, but what next?

Combine Mark’s tool with real-time data on the network structure,
and apply passive fingerprinting to determine the initial TTL of a system
that sends specific requests, and this technique becomes much more power-
ful. This additional data allows us to perform an initial passive assessment of
incoming traffic by comparing observed and initial TTLs with the expected
distance indicated by the network map.* Because the distance we should be
seeing can be determined without initiating any active probe of the net-
work topology data, we can instantly distinguish between legitimate and
malicious traffic without much effort. This, in turn, makes it possible to
react to massive incidents quite reliably and to detect individual low-profile
probes without alerting the attacker that a spoofing detection system is
in place.

Obviously, there is plenty to be gained from taking the structure of a
network into account when considering peer-to-peer relations. But spoofing
detection is only the beginning.

* In such an approach, the comparison of TTLs must be performed with a certain error margin,
because there can be several additional hops within internal networks. Too, some routes are
asymmetric, and their lengths can differ slightly depending on the direction in which the traffic
is being exchanged.
Topology of the Network 247

Network Triangulation with Mesh-Type Topology Data

Network triangulation is a considerably more interesting application of
network topology mesh-type data for the purpose of traffic analysis. We can
use network triangulation to determine the approximate location of an
attacker who sends spoofed packets without the help of those operating the
underlying routing backbone, as soon as they choose to attack more than
one target at once or in succession—truly, happiness in misery.

Well, to be correct: although triangulation works best when the attacker
chooses several targets, in some scenarios, it may work quite well even if they
choose to attack only one service. In particular, we might be able to observe
the same attack from different viewpoints when the object attacked has
several IP addresses and the service is being served from several physical
locations in order to distribute the load and make the entire structure fault
tolerant (as is common with web services). In all other scenarios, we can get a
range of data on an attack when system administrators notice that more than
one system is being targeted by an attacker and share their data about the
incident.

Regardless of the case, once data believed to come from a single source
is seen at more than one destination, we can triangulate. For each desti-
nation at which the traffic is seen, only a specific set of networks are at a
distance that can be determined by observing the distance through which
the offending packet has traveled (again, possible to find out by examining
TTL*). An intersection of all those sets for every observation point would
yield a smaller set—or, often, only a single network—from which the attack
could originate, as shown in Figure 17-2.

The ability to perform the trace on our own frees us from unconditional
dependence on ISPs and helps to precisely pinpoint who is attacking or
probing our network—and perhaps find out why.

Although this approach is much more difficult to thwart than traditional
despoofing, a clever attacker might still be able to fool an observer by ran-
domizing a different TTL (or range of TTLs) to be used for every target.
True, we know of no tools to do this at present, but this might change.

The battle is lost? Nope—there is a way to keep perpetrators from
fooling us that way.

Network Stress Analysis

The solution, dubbed “network stress analysis,” comes in the form of a fine
piece of research presented by Hal Brunch and Bill Cheswick at the LISA
conference in 2000.3 Brunch and Cheswick proposed an interesting use for

* Even if the tool uses random TTLs, it is possible to judge the distance by using the maximum
TTL observed if a number of packets can be observed at each destination (which is almost always
the case). For example, if the scan tool randomizes initial TTLs in the range of 32 to 255, but for
several thousand packets received at the destination, none had a TTL higher than 247, the host
is quite likely to be 255 – 247 = 8 systems away.
248 Chapter 17

Figure 17-2: A naive network triangulation: only one origin is consistent with all
observations. The attacker may be spoofing source addresses, but can’t fool the victims.

tree-type network topology data (similar to the graph shown earlier in Figure
17-1) obtained for a specific location. They came up with a way to use the
data to detect the origin of a particular type of spoofed traffic: Denial of
Service. The approach itself is fairly trivial and is based on the assumption
that such an attack would stress not only the system against which it is being
carried out, but also interim routers, and that this stress could be externally
measured by the victim and used to—almost literally—go back and find a
yarn by pulling the wire.

The job of stress-testing network links is achieved by first building or
obtaining a tree of links from your location to all networks on the Internet
and then going through subsequent branches of this tree structure when an
attack occurs. For each branch (which, in reality, denotes a connection to a
higher-order router), we can iteratively measure network load on this node
by sending test traffic to or through the router associated with it. (In this
particular paper, a UDP [User Datagram Protocol] chargen is used, but
ICMP requests or any other type of messages could be also used.) We choose
a more loaded node as a potential candidate for the incoming traffic and
then list and test all branches that spawn from this node until we trace the
traffic back to the origin.

Figure 17-3 illustrates a simple trace-back scenario. In the first phase, the
attacked system attempts to measure the performance of the three nearest
Internet routers when an attack occurs; it concludes that the first (topmost)
router is the most saturated.

Based on this information, the victim chooses to test only those routers
directly connected (peering) with this device. In this particular figure, only
three devices are to be tested (the remaining six are not to be tested because
they do not peer with this device), and, again, the first one is the most

Observation system 3
Distance to attacker = 3

Observation system 2
Distance to attacker = 2

Observation system 1
Distance to attacker = 4

Attacker
Topology of the Network 249

loaded. The process continues until a router that is directly connected to a
specific network, for which a physical location and owner information can be
discovered through public databases, is determined to be the final endpoint.

Figure 17-3: Recursive attack backtrace using network topology data and stress testing

A potential problem arises: some devices might be heavily loaded for
reasons other than handling DoS traffic; other devices might have plenty of
spare CPU cycles and would not be considerably affected by relaying
malicious traffic.

To solve this issue, the research proposes putting an artificial short-term
load on the router (by generating additional traffic) and then observing how
this test affects the bandwidth and latency of the DoS requests; if this parti-
cular device is indeed involved in relaying malicious packets, the attack rate
should drop when we put load on the device (again, likely by generating
additional bogus TCP, UDP, or ICMP requests, designed more to consume a

Attacker
(spoofs packets with
source address in
Network A)

Impersonated
machine
(innocent bystander)

Victim
(sees traffic as
coming from
Network A)

Network X
Routers with
higher load

Network A

Step X (last): The loaded
router discovered in step
X-1 is connected to only
one network. The culprit is
here.

Step 1: Victim determines
which of the second level
routers has a higher load.

Step N: Victim determines which of
the Nth level routers
communicating with the loaded
(N-1)th level router have higher
load.
250 Chapter 17

device’s CPU power than to congest its interfaces). Hence, there should be a
correlation only on those branches that are involved in servicing the
malicious traffic.

This brilliant and simple scheme had been successfully used in test
environments. However, because it involves interacting with routers and
placing an additional load on them, certain ethical considerations come into
play when we consider using it in the real world.

Food for Thought

The main difficulty in using the techniques discussed in this chapter for
tracking down attackers is that we need to construct and update network
maps for each location. It is not immediately clear how often such maps
should be refreshed, and what methods would prove most reliable and least
intrusive.

Another possible issue is that much of the core Internet infrastructure is
redundant. Some alternative routes may be chosen only when the primary
route fails or is saturated, though in some cases the switch may occur as a
part of load balancing. Thus, some empirical maps may become obsolete in a
matter of minutes or hours—although such cases are not very common.

In the end, although private, individual uses of various despoofing tactics
may prove very successful, there are many open questions that need to be
answered before we can deploy such techniques on a large scale—and some
of the questions are not as much about technical issues.
Topology of the Network 251

W A T C H I N G T H E V O I D
When looking down the abyss, what does not kill us

makes us stronger

We have looked at many ways to discover information
and intercept data by observing the communications
between two systems or by watching the side effects of
such communications. The story does not end here,
however. Sometimes, by averting our eyes from the
target we hope to probe, we can see even more.

An entire set of methods commonly referred to as “black-hole monitoring”
is dedicated to observing and analyzing unwanted or unsolicited traffic that
arrives accidentally, erroneously, or in mangled form at a specific destination.
These methods most often include simply running a packet dump utility and
then painstakingly analyzing and theorizing about every single observance.

Although in a perfect world, we should gain nothing by looking for data
where we are not supposed to find it, in reality we can use these methods to
gather abundant bits of information and invaluable hints as to the condition
of a network as a whole. Even though the information is mostly random and
we cannot choose who we listen to, we can still benefit from the effort.

Direct Observation Tactics

One application of black-hole monitoring lies in detecting and analyzing
global attack trends. Many black hat hackers in possession of new attack
techniques often simply scan large blocks of network addresses to find
vulnerable targets that can be compromised and ultimately used for illicit
activities (presumably to collect skip hosts* or to build attack drone networks
for automated attacks). We can use black-hole monitoring to alert us to new
vulnerabilities being exploited in the wild by simply observing increased
standard network scan activity from various sources.

Many network administrators deploy black-hole monitoring. They
sometimes combine it with honeypots (in which a fake “lure” system is put
out on the network to catch attackers and intercept their tools and identify
their techniques1) to produce an advance warning system that will allow
them to be the first to know about impeding breakouts of worms and other
malware. (You can also use black-hole traffic to calibrate “noise levels” and
detect targeted attacks against your servers more efficiently, without picking
up automated, indiscriminate malicious activity.)

Researchers such as Dug Song and Jose Nazario (Jose most recently in
his book Defense and Detection Strategies against Internet Worms2) have attempted
to analyze black-hole activity during massive outbreaks of network worms.
Their goal is to better understand and model the distribution (initial
propagation and reinfection) dynamics of the network and to test the
efficiency and persistence of the worms’ infection algorithms. Their research
will help us to devise future defenses against massive, distributed threats,
while providing valuable insight into the state of the network today. Some
examples of their findings are shown in Figures 18-1 through 18-4.

Figure 18-1 shows how a worm propagates during an outbreak. The data
is based on the number of observed attack attempts on TCP port 137, a part
of the Windows NetBIOS implementation, which is installed by default on all
Windows computers and targeted by many types of self-propagating malware.
Notice in this figure how, after a week of initial propagation—when both the
number of infected sites (sources) and systems attacked on the observed
black-hole network were steadily and rapidly increasing—a stabilization
period suddenly stretches for over a month with dramatic peaks and valleys.
Such a propagation footprint is highly unique to a worm and the network
conditions in which it operates; it also reflects the subtleties of the target
selection and infection algorithms used by the author.

Figure 18-2 shows a different aspect of the worm propagation algorithm
and depicts the properties of the target selection algorithm. In this case, a
popular worm that targeted Microsoft SQL servers appears to have fairly
continuous coverage of the address space (although addresses with octets
between about 200 and 225 are chosen considerably more often, and the
worm appears to skip values over 225 altogether).

* Skip host is a system used as an intermediate hop for carrying out further attacks or other
illicit activity (such as sending spam). This technique makes it more difficult to track the
ultimate offender, because their origin is not directly known, and a number of administrators
or jurisdictions must cooperate to find them.
254 Chapter 18

Figure 18-1: Windows worm propagation characteristics

Figure 18-2: SQLSnake worm target selection algorithm histogram; note the nonuniform but
generally continuous coverage of the address space
Watching the Void 255

Figure 18-3 shows the same graph for a different network worm,
Slapper. This worm targeted Linux systems, exploiting a flaw in a popular
OpenSSL encryption library. The algorithm appears to offer considerably
more uniform, but much less continuous coverage, with gaping holes
across certain values.

Figure 18-3: The Slapper worm target selection algorithm histogram. This shows a far more
uniform distribution, but noncontinuous coverage with gaps suggesting that the least signif-
icant bits of each of the “random” addresses are constant—perhaps due to a programming
glitch.

Figure 18-4 shows worm persistence patterns over time. For example,
some worms appear to die off steadily as systems are patched and disinfected,
while others use algorithms that cause sudden and recurring rise and fall
patterns (familiar to anyone who has experimented with population or
epidemiology models based on natural phenomena).

As Jose and his colleagues strive to demonstrate, black-hole monitoring
may not be only a routine and perhaps completely needless activity, but also
a great way to discover the secret life of all things malicious. Alas, the story
does not end there. By observing only the traffic we consider aimed at us, we
miss the most interesting bits of data.

Attack Fallout Traffic Analysis

The other application of black-hole monitoring relies on observing traffic
that was never aimed at us in the first place, but which is merely a side effect
of other activity.
256 Chapter 18

Figure 18-4: Worm persistence over time. Note that there is no trivial spike-falloff pattern
for CodeRed and that the model behaves like a biological population model.

Here we can see how a number of common reconnaissance and attack
schemes use address spoofing to conceal an attacker’s identity. The assump-
tion is that an administrator will have difficulty differentiating decoy traffic
from bogus addresses from the attacker’s actual probes. Although as I’ve
shown in previous chapters, this approach does not guarantee the attacker
complete anonymity; in order to successfully “despoof” the traffic, an admin-
istrator must implement extensive logging and additional measures at the
time of the attack. Because these procedures are not always implemented,
attackers can often spoof their attacks quite effectively and remain out of the
spotlight.

Whether packets are spoofed or not, the attacked system will in good
faith respond to all requests including those allegedly coming from made-up
addresses. However, only the responses to packets with a proper source
address arrive back at the sender; all other probes generate responses that
are scattered all around the Internet, and we can often catch them.

Although it may seem unlikely that we will receive such a misdirected
packet, remember that a considerable number of SYN+ACK, RST+ACK, and
RST packets are generated in response to decoy scans or SYN flood attacks.
The Internet address space appears vast, with millions of packets typically
involved in such attacks, but it is quite likely that over time, some will reach
every single network block. Although the likelihood of a single, randomly
generated spoofed packet bouncing back to a specific address is only 1 in
4,294,967,296 (1 to 232), assuming that a typical small subnet assigned to a
small company or organization usually consists of 256 addresses (class C

In
fe

ct
io

n
at

te
m

pt
s

Date

600

500

400

300

200

09-18 09-28 10-08 10-28 11-07

100

700

10-18

CodeRed
CodeRedII (and variants)
Nimda (and variants)
Watching the Void 257

network or equivalent), this probability is increased to 1 in 16,777,216 (1 to
224). This can be further improved by ruling out address ranges that are
known to be reserved for special purposes or which are otherwise not
noteworthy and thus excluded in certain types of attacks.

Because the face of a single SYN packet is about 40 bytes (and compresses
well in bulk) and a typical network link available to a casual attacker has a
throughput of approximately 10 to 150 kilobytes per IP layer per second (low-
end DSL and T1 line, respectively), he can push out 250 to nearly 3,000
packets in this time frame—or 900,000 to circa 10,000,000 packets per hour.*

For a typical DoS attack to produce any noticeable results and cause
major inconvenience to the victim, it usually has to be carried out for several
hours or days. (The attacker wants to inconvenience their victim for as long
as possible.) As a result, dozens to hundreds of millions of packets are sent,
generating a similar number of SYN+ACK or RST+ACK replies.

Due to this huge amount of traffic, it’s quite reasonable to expect that
even a relatively small entity could notice the fallout of a small SYN flood
attack as it happens, even if the recipient host drops many attack packets.
Furthermore, administrators able to monitor class B equivalent networks
(65,356 addresses, usually owned by larger companies, ISPs, research
institutions, and so forth) would be able to pick up much smaller events
quickly.

Because all the fallout replies in a spoofed DoS attack include certain
details of the messages fabricated by the attacker to trigger those responses
in the first place (such as port and sequence numbers, timing information,
and so forth), we can use these replies to extract important information
about the type and scale of attack. We can use these replies to determine
whether a specific service has been targeted, how many systems have been
targeted, the bandwidth available to the attacker, and the tool used to
perform the attack (by examining source port selection, chosen sequence
numbers, and “random” IP patterns†).

Finally, by analyzing the sources of these ricochet responses, we might
notice that a particular network segment is under attack or be able to identify
global “hostility trends,” perhaps to better prepare if a specific industry or
business is being targeted. We can also use this information to learn about
attacks that are being covered up by the victim or to identify false claims of
attacks. (Claims that certain targets are being attacked by cyber-terrorists are
sometimes made as a PR stunt to justify financial losses or to push a specific
political agenda. Of recent, some experts accused SCO of taking their servers
off-line and pretending to be a victim of a coordinated DoS attack to discredit
the Linux users community.)

* Note that determined, seasoned attackers proficient in Denial of Service attacks often have
dozens or hundreds of “zombie” nodes at their command, thus increasing this estimate
dramatically.
† For example, some tools only “spoof” packets from even or odd IP addresses due to coding
flaws. Analyses similar to those conducted by Jose Nazario and others typically prove to be as
good at pinpointing attack tools as they do at identifying worms.
258 Chapter 18

Detecting Malformed or Misdirected Data

This application for monitoring black holes relies on monitoring traffic that
does not seem to make any sense, but that still appears to reach a specific
destination. To better illustrate the problem, allow me this digression.

In 1999, a group of friends, colleagues in Poland, and I began a humble
after-hours project. Our goals were to track down a hard-to-explain set of
RST+ACK packets that we had noticed arriving at networks we maintained
and to monitor unusual and unsolicited traffic patterns arriving at unused
network segments in general. It was great fun, and, as you might imagine, it
resulted in a good deal of speculation when we tried to reasonably explain
some of the most unusual cases. Our research also enabled us to learn more
about the world around us as we encountered some exceedingly bizarre and
seemingly inexplicable traffic that, once properly analyzed, provided more
insight into the vast conspiraces of our wired world.

Although formally abandoned, this project ended up in my private
“Museum of Broken Packets,”3 a semihumorous web page dedicated to
tracking down, documenting, and explaining packets that should never
have reached their destination or that should never have looked the way
they did. The stated purpose of the museum was as follows:

The purpose of this museum is to provide a shelter for
strange, unwanted, malformed packets—abandoned and
doomed freaks of nature—as we, mere mortals, meet them
on the twisted paths of our grand journey called life. Our
exhibits—or, if you wish, inhabitants—are often just a
shadow of what they used to be before they met a hostile,
faulty router. Some of them were born deformed in the
depth of a broken IP stack implementation. Others were
normal packets, just like their friends (you or me), but got
lost looking for the ultimate meaning of their existence and
arrived where we should never have seen them. In every
case, we try to discover the unique history of each packet’s
life, and to help you understand how difficult it is to be a
sole messenger in the hostile universe of bits and bytes.

And this is what the last type of black-hole monitoring boils down to.
Although the task can appear pointless at first, it is foolish to assume so.
The museum made it possible to passively uncover dark secrets about
various proprietary devices and well-protected networks, and running such
an experiment elsewhere would undoubtedly result in the same or greater
accomplishments.

Some of the exhibits in my museum include marvels such as the following:

 Packets originating from networks with a specific type of web accelerator,
router, or firewall; the device appends, strips, or otherwise mangles some
of the data. A good example is a flaw in certain Nortel CVX devices that
is responsible for the occasional stripping of TCP headers from packets
Watching the Void 259

(as discussed in Chapter 11). The uniqueness of this flaw enables us to
learn a good deal about a number of remote networks without having to
actually go out and probe them.

 Several line noise exhibits, showing packets containing either utter gar-
bage or data that certainly did not belong to a specific connection. One
of the most surprising exhibits is unsolicited traffic containing data that
appears to be a dump of .de DNS zone contents (a listing of all domains
in Germany). The traffic could not have originated just anywhere, because
mere mortals have no rights to obtain such a list. Instead, it must have
originated at an authorized party able to obtain and transfer this data
and must have been mangled either by the sender or by a device some-
where along the way. Although all cases shed little light on the nature of
mishaps on the network, cases such as this one often enrich the observer
with unexpected—and often valuable—findings.

Other noteworthy exhibits included cases of apparent espionage camou-
flaged to appear as regular traffic and many other coding or networking
hiccups. But enough bragging—if you feel compelled to find out more, visit
http://lcamtuf.coredump.cx/mobp/.

Food for Thought

Many regard black-hole monitoring as just another way to detect attacks
against their systems (and perhaps an expensive way, given the scarcity of
public IP space resources). But the real value of this technique is that it
makes it possible to not only identify known attacks (something that can be
done just as well in many other locations, without wasting IP space), but also
detect and analyze subtle patterns that would otherwise be lost below the
“noise level” in an extensively used network.

Naturally, performing this type of black-hole monitoring is not easy and
remains expensive. It takes time to learn how to find that needle in the
haystack of the usual worm and black hat activity that, in a sufficiently
extensive network, usually bears no significance beyond statistical reporting.

Yet, for the joy of finally finding the needle, it is often worth a try.
260 Chapter 18

C L O S I N G W O R D S
Where the book is about to conclude

This is where the book ends, but where I hope your
journey begins. I have taken pride in guiding you
through the world of complex and uncommon
security problems that I most enjoy, and I hope you
have shared my passion. Whether you are a seasoned
security professional—perhaps more experienced and knowledgeable
than I—or just an enthusiast discovering this field, I hope that I have given
you a new perspective on security, as a challenge and art all its own, not a
set of obstacles that must be eliminated or worked around.

By understanding the subtle relationships between seemingly unrelated
components and processes, you can effectively tackle the most dangerous
and pervasive security problems and assess and mitigate everyday risks more
efficiently. Security problems should be seen as a function of a solution to
virtually every challenge in the world of IT, no matter how trivial or limited
in scope; not as the adverse circumstances of doing business. Only by seeing
the magic and charm of the complementary universes and the subtle ways
they interact can we avoid routine and begin to really enjoy our work, or
understand our hobby.

But then it is not the right time or place to hit high notes.
Thank you for playing.

B I B L I O G R A P H I C N O T E S

Chapter 1

1. Alan Turing, “On Computable Numbers, with an Application to the
Entscheidungsproblem,” Proceedings of the London Mathematical
Society, Series 2, 42 (1936).

2. R.L. Rivest, A. Shamir, L. Adleman, “A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems,” Massachusetts Institute of
Technology (1978).

3. Ueli M. Maurer, “Fast Generation of Prime Numbers and Secure Public-
Key Cryptographic Parameters,” Institute for Theoretical Computer
Science, ETH Zurich, Switzerland (1994).

4. Donald E. Knuth, The Art of Computer Programming, Volume 2:
Seminumerical Algorithms, 3rd ed. Addison-Wesley (1997).

5. H. Krawczyk, “How to Predict Congruential Generators,” Journal of
Algorithms 13, no. 4 (1992).

6. S. Bakhtiari, R. Safavi-Naini, J. Pieprzyk, “Cryptographic Hash Functions:
A Survey,” Centre for Computer Security Research, Department of
Computer Science, University of Wollongong, Australia (1995).

7. Dawn Xiaodong Song, David Wagner, Xuqing Tian, “Timing Analysis
of Keystrokes and Timing Attacks on SSH,” University of California,
Berkeley (2001).

8. Claude E. Shannon, “Prediction and Entropy of Printed English,”
Bell Systems Technical Journal 3 (1950).

9. Benjamin Jun, Paul Kocher, “The Intel Random Number Generator,”
Cryptography Research Inc. (1999).

10. “Evaluation of VIA C3 Nehemiah Random Number Generator,”
Cryptography Research Inc. (2003).

11. Michael A. Hogye, Christopher T. Hughes, Joshua M. Sarfaty, Joseph D.
Wolf, “Analysis of Feasibility of Keystroke Timing Attacks Over SSH
Connections,” CS588 Research Project, School of Engineering and
Applied Science, University of Virginia (2001).

Chapter 2

1. Yurii Rogozhin, “A Universal Turing Machine with 22 States and 2
Symbols,” Romanian Journal of Information Science and Technology 1 no. 3
(1998).

2. Milena Milenkovic, Aleksandar Milenkovic, Jeffrey Kulick, “Demystifying
Intel Branch Predictors,” Electrical and Computer Engineering Depart-
ment, University of Alabama in Huntsville (2002).

3. Paul C. Kocher, “Timing Attacks on Implementations of Diffie-Hellman,
RSA, DSS, and Other Systems,” Cryptography Research Inc. (1999).

4. Intel 80386 Programmer’s Reference Manual, section 7.2.IMUL, Intel Corp.
(1986).

5. E. Biham, A. Shamir, “Differential Fault Analysis: Identifying the Struc-
ture of Unknown Ciphers Sealed in Tamper-Proof Devices” (1996).

Chapter 3

1. Wim van Eck, “Electromagnetic Radiation from Video Display Units:
An Eavesdropping Risk?” PTT Laboratories, Netherlands (1985).

2. Ian A. Murphy, “Who’s Listening?” IAM/Secure Data Systems (1988,
1997).

3. Winn Schwartau, Information Warfare. 2nd ed. Thunder’s Mouth Press,
New York (1996).

Chapter 5

1. John A.C. Bingham, The Theory and Practice of Modem Design. Wiley-
Interscience (1988).

2. Electronic Industries Association, Engineering Department, “Interface
Between Data Terminal Equipment and Data Circuit-Terminating
Equipment Employing Serial Binary Data Interchange” (1991).

3. Charles E. Spurgeon, Ethernet: The Definitive Guide. O’Reilly and
Associates (2000).
264 Bibl iographic Notes

4. Joe Lughry, David A. Umphress, “Information Leakage from Optical
Emanations,” ACM Trans. Info. Sys. Security 5, no. 3 (2002).

5. Adi Shamir, Eran Tromer, “Acoustic Cryptanalysis: On Nosy People and
Noisy Machines.” Preliminary presentation available as of this writing at
http://www.wisdom.weizmann.ac.il/~tromer/acoustic/ (2004).

6. Paul Kocher, Joshua Jaffe, Benjamin Jun, “Differential Power Analysis.”
Cryptography Research, Inc. (2000).

Chapter 6

1. J. Postel, J. Reynolds, “RFC-1042: A Standard for the Transit of Internet
Protocol Datagrams Over IEEE 802 Networks,” Network Working Group,
http://www.ietf.org/rfc/rfc1042.txt (1988).

2. Ofir Arkin and Josh Anderson, “EtherLeak—Ethernet Frame Padding
Information Leaks,” @Stake, http://www.atstake.com/research/
advisories/2003/atstake_etherleak_report.pdf (2003).

Chapter 7

1. David C. Plummer, RFC 826, “An Ethernet Address Resolution
Protocol,” Network Working Group (1982).

2. Louis Senecal, “Layer 2 Attacks and Their Mitigation,” Cisco (2002).

Chapter 8

1. J. Case, M. Fedor, M. Schoffstall, J. Davin, RFC 1157, “A Simple Network
Management Protocol,” Network Working Group (1990).

2. Institut für Bankinnovation GmbH, “PSYLock: a typing behaviour
based psychometrical authentication method,” http://pc50461.uni-
regensburg.de/ibi/de/leistungen/research/projekte/einzelprojekte/
psylock_english.htm (2003).

3. Solar Designer, Dug Song, “Passive Analysis of SSH (Secure Shell)
Traffic,” Openwall Project, http://www.openwall.com/advisories/OW-
003-ssh-traffic-analysis (2001).

4. Nikita Borisov, Ian Goldberg, David Wagner, “Intercepting Mobile
Communications: The Insecurity of 802.11” (2001).

Chapter 9

1. J. Postel, University of Southern California, “RFC 791: Internet
Protocol,” Network Working Group (1981).

2. J. Postel, University of Southern California, “RFC 796: Address
Mappings,” Network Working Group (1981).
Bibl iographic Notes 265

3. J. Mogul, S. Dearing, “RFC 1191: Path MTU Discovery,” Network Work-
ing Group (1990).

4. J. Postel, University of Southern California, “RFC 768: User Datagram
Protocol,” Network Working Group (1980).

5. J. Postel, University of Southern California, “RFC 793: Transmission
Control Protocol,” Network Working Group (1981).

6. S. Bellovin, “RFC1948: Defending Against Sequence Number Attacks,”
Network Working Group (1996).

7. V. Jacobson, B. Braden, “RFC1232: TCP Extensions for High
Performance,” Network Working Group (1992).

8. M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, “RFC2018: TCP
Selective Acknowledgment Options,” Network Working Group (1996).

9. B. Braden, “RFC1644: T/TCP – TCP Extensions for Transactions –
Functional Specification,” Network Working Group (1994).

10. J. Postel, University of Southern California, “RFC 792: Internet Control
Message Protocol,” Network Working Group (1981).

11. Lance Spitzner, Honeypots: Tracking Hackers. Addison-Wesley Publishing
Company (2002).

12. R. Morris, “A Weakness in the 4.2BSD UNIX TCP/IP Software,” AT&T
Bell Laboratories (1985).

Chapter 10

1. Michal Zalewski, “Strange Attractors and TCP/IP Sequence Number
Analysis,” BindView Corporation, http://www.bindview.com/Support/
RAZOR/Papers/2001/(2001).

2. S. Bellovin, "Defending Against Sequence Number Attacks," Network-
Working Group, http://www.ietf.org/rfc/rfc1948.txt (1996).

3. Joe Steward, “DNS Cache Poisoning: the Next Generation,” http://
www.lurhq.com/dnscache.pdf (2002).

Chapter 11

1. Elizabeth D. Zwicky, Simon Cooper, D. Brent Chapman, Building Internet
Firewalls. O’Reilly & Associates (2000).

2. G. Ziemba, D. Reed, P. Traina, “RFC1858: Security Considerations for IP
Fragment Filtering,” Network Working Group (1995).

3. Uriel Maimon, “TCP Port Stealth Scanning,” Phrack Magazine no. 49
(1996).

4. J. Postel, J. Reynolds, “RFC959: File Transfer Protocol,” Network Work-
ing Group (1985).
266 Bibl iographic Notes

5. Mikael Olson, “Extending the FTP ALG Vulnerability to any FTP client,”
VULN-DEV mailing list, http://www.securityfocus.com/archive/82/
50226 (2000).

6. Michal Zalewski, “Linux Kernel IP Masquerading Vulnerability,”
Bindview Corporation, http://razor.bindview.com/publish/advisories/
adv_LkIPmasq.html (2001).

7. R. Braden (editor), “RFC1122: Requirements for Internet Hosts—
Communication Layers,” Network Working Group (1989).

Chapter 13

1. Salvatore Sanfilippo, “New TCP Scan Method,” Bugtraq, http://
seclists.org/bugtraq/1998/Dec/0082.html (1998).

Chapter 14

1. World Wide Web Consortium, http://www.w3c.org/History.html.

2. Vannevar Bush, “As We May Think,” Atlantic Monthly 176, no. 1 (1945):
101-08.

3. Tim Berners-Lee, “Basic HTTP,” http://www.w3c.org/Protocols/
HTTP/HTTP2.html.

4. R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach,
T. Berners-Lee, “RFC2616: HyperText Transfer Protocol—HTTP/1.1.”
Network Working Group (1999).

5. Various sources, references quoted after http://usability.gov/
guidelines/softhard.html: Anna Bouch, Allan Kuchinsky, Nina Bhatti,
“Quality Is in the Eye of the Beholder: Meeting Users’ Requirements for
Internet Quality of Service,” CHI (2000);
Martin, Corl, “System Response Time Effects on User Productivity,”
Behaviour and Information Technology, vol 5, no. 1, 3-13 (1986);
Jakob Nielsen, “Top Ten Mistakes in Web Design,” http://
www.useit.com/alertbox/9605.html (1996);
Nielsen, “The Need for Speed,” http://www.useit.com/alertbox/
9703a.html (1997); Nielsen, “Changes in Web Usability Since 1994,”
http://www.useit.com/alertbox/9712a.html (1997);
Nielsen, “The Top Ten New Mistakes of Web Design,” http://
www.useit.com/alertbox/990530.html (1999).

6. Kristol, Montulli, “RFC2109: HTTP State Management Mechanism,”
Network Working Group (1997).

7. Martin Pool, “Privacy Problems with HTTP Cache-Control,” Bugtraq,
http://cert.uni-stuttgart.de/archive/bugtraq/2000/03/msg00365.html
(2000).
Bibl iographic Notes 267

8. Bamshad Mobasher, Robert Cooley, Jaideep Srivastava, “Automatic Per-
sonalization Based on Web Usage Mining,” ACM Communications vol.
43 no 8, 142-151 (1999).

9. Edward Felten, Michael Schneider, “Timing Attacks on Web Privacy,”
ACM Conference on Computing and Communications Security (2000).

Chapter 15

1. ISO/IEC Standard 9899, “Programming Language – C,” http://
plg.uwaterloo.ca/~cforall/N843.ps (1999).

2. DISCO, http://www.altmode.com/disco.

Chapter 16

1. Albert-Laszlo Barabasz, Vincent W. Freeh, Hawoong Jeong, Jay B.
Brochman, “Parasitic Computing,” letter to Nature 412 (2001).

2. M. Leech, “RFC 3607: Chinese Lottery Cryptoanalysis Revisited,”
Network Working Group (2003).

Chapter 17

1. Bill Cheswick, Hal Burch, Steve Branigan, “Mapping and Visualizing the
Internet”, http://www.cheswick.com/ches/papers/mapping.ps.gz
(2000).

2. Despoof, http://razor.bindview.com/tools/desc/despoof_readme.html.

3. Hal Brunch, Bill Cheswick, “Tracing Anonymous Packets to Their
Approximate Source,” http://www.usenix.org/publications/library/
proceedings/lisa2000/burch/burch_html (2000).

Chapter 18

1. Lance Spitzner, Honeypots: Tracking Hackers: Addison-Wesley (2002).

2. Jose Nazario, Defense and Detection Strategies against Internet Worms:
Artech House (2003).

3. Michal Zalewski, “Museum of Broken Packets,” http://
lcamtuf.coredump.cx/mobp (2001).
268 Bibl iographic Notes

I N D E X

A
accumulators, 44
ACK packets and flags

in address spoofing, 257
in DoS attacks, 258
in idle scanning, 195–96
in stateless filtering, 176–77,

183–84
in TCP, 128

ACK values in buffers, 190–92
acknowledgment numbers

in passive fingerprinting, 139–40
in TCP headers, 131

acoustic memory, 233
addition circuits, 29–30
address resolution in switched

networks, 96–97
Address Resolution Protocol (ARP),

96
address spaces and addressing

in Ethernet protocol, 90
on Internet, 116–18
with PMTUD, 186

address spoofing. See spoofing
address translation, 178–80
Adelman, Len, 5
agents in zero-effort exploits, 59–61
ALU (arithmetic logic unit) stage,

38
AND gates and operators, 22

for calculations, 28–30
in computer design, 27–28
and DeMorgan’s law, 22–23
for flip-flops, 31–32

Apache servers, logging on, 212
applets, 231–32
arithmetic logic unit (ALU) stage,

38
ARP (Address Resolution Protocol),

96
attack fallout traffic analysis, 256–58
attackers

metrics for, 220–23
observing, 223–24

attractors for sequence numbers,
158–68

authoring software, meta-
information storage for,
54–55

automated random number
generation, 6–7

autonomous systems, 116
autopadding in Ethernet, 93

B
backbone routers, 116
bandwidth in HTTP, 207–9
Barabasz, Albert-Laszlo, 228
behavioral analysis

of attackers, 220–23
for privacy invasions, 216–17
for software identity, 201, 212–17

Berners-Lee, Tim, 202–3
Biham, E., 49
binary discriminators, 85
binary system, 25–26
binding for computational effort

analysis, 48

biphase code, 67
bipolar encoding, 74–75
black-hole monitoring, 253

attack fallout traffic analysis,
256–58

direct observation, 254–56
malformed and misdirected data

detection, 259–60
blind spoofing

in connection hijacking, 147
origin identification of, 245–47

blinkenlights, 78–79
implications of, 80
protecting, 85–87
snooping devices for, 81–84

Boole, George, 21–22
Boolean logic, 21–22

applications of, 25–26
for calculations, 28–30
in computer design, 27–28
for flip-flops, 31–32
in nonelectric computers, 26–27
satisfiability equations, 228–32
universal operators for, 22–25

bots in zero-effort exploits, 59–61
bottlenecks in HTTP, 207–9
branch prediction, 41
Brochman, Jay B., 228
browsers

behavioral analysis for, 212–17
development of, 203

Brunch, Hal, 248–49
buffers

for Ethernet frames, 93–94
leaking, 56
for parasitic storage, 234–37
URG and ACK values in, 190–92

Bush, Vannevar, 202

C
cable modems, 73
caching

in behavioral analysis, 216–17
for HTTP, 207–11
for memory, 39

CAIDA Internet map, 244
calculations, Boolean logic for,

28–30
CAM (content addressable

memory), 97, 100
camouflaging software identity,

200–202
Carrier Sense Multiple Access with

Collision Detection
(CSMA/CD), 75

carry bits in addition circuits, 29–30
CCDs (Charge Coupled Devices),

19
CERN (Conseil Europeen pour la

Recherche Nucleaire), 202
Charge Coupled Devices (CCDs),

19
checksums

in Ethernet, 75–76
in ICMP headers, 134
in IP fragmentation, 149–50
in IP headers, 124
in satisfiability equations, 230
in TCP headers, 131

Cheswick, Bill, 244–45, 248–49
Chinese lottery computing

schemes, 231
Chinese Remainder Theorem, 6
Church-Turing thesis, 32, 34
clamping, MSS, 182
clocks

in data transmission, 66
in port scanning attacks, 222

Code Red worm, 257
collisions

in data transmissions, 75–76
sequence number, 154

complexity in instruction sets, 41
computational effort analysis, 44–48
connection hijacking, 147
Conseil Europeen pour la

Recherche Nucleaire
(CERN), 202

content addressable memory
(CAM), 97, 100
270 INDEX

content caching
in behavioral analysis, 216–17
for HTTP, 207–11

content optimization, passive
fingerprinting for, 144

control flags in TCP headers,
127–30

controllers, keyboard, 9–10
Cooke, Jean-Luc, 231
cookies

HTTP, 209–11
SYN, 177

counters, 105–6
Courtay, Olivier, 141
covert reconnaissance, passive

fingerprinting for, 146
CRONOS project, 141
CRT monitors, electromagnetic

radiation from, 52–53
cryptography

NP problems in, 228
public key, 4–6

CSMA/CD (Carrier Sense Multiple
Access with Collision
Detection), 75

customer profiling, passive
fingerprinting for, 145

D
data encryption

NP problems in, 228
public key, 4–6

data offsets in TCP headers, 131
decrypting RSA algorithm, 42–43
delay line memory, 233
delayed coordinates for sequence

numbers, 156–68
DeMorgan, Augustus, 22
DeMorgan’s law, 22–23
despoof tool, 246–47
destination addresses in IP headers,

121
destination ports in TCP headers,

130
/dev/random mechanism, 14

DF (don’t fragment) flag, 122
controversy over, 184–86
in passive fingerprinting, 136–37
in PMTU discovery, 122

diagnostic lights, 78–79
implications of, 80
protecting, 85–87
snooping devices for, 81–84

dibits, 70–71
differential phase shift keying

(DPSK), 69–71
Diffie, Whitfield, 4
direct observation tactics, 254–56
DISCO tool, 224
discreet parasitic storage, 239
disk-activity LEDs, 88
disk queues for parasitic storage,

237–39
DNS system problems, 171
documents, meta-information

storage for, 54–55
don’t fragment (DF) flag

controversy over, 184–86
in passive fingerprinting, 136–37
in PMTU discovery, 122

DoS attacks
fallout from, 258
origin identification of, 246–47
with PMTUD, 186

DPSK (differential phase shift
keying), 69–71

DRAM (dynamic RAM), 39
DSL, 73
DTP (Dynamic Trunking Protocol),

98, 100–101
dynamic buffers

for Ethernet frames, 93
URG and ACK values in, 190–92

dynamic RAM (DRAM), 39
Dynamic Trunking Protocol (DTP),

98, 100–101

E
early-out optimization, 44–46
echo cancellation circuitry, 72–73
INDEX 271

echo requests for parasitic storage,
233

electromagnetic radiation (EMR),
52–53

emissions, electromagnetic, 52–53
encoding in data transmission,

68–69
encryption

NP problems in, 228
public key, 4–6

entropy and keystrokes, 11–14, 18
EOL option in TCP headers, 133
ephemeral ports, 125, 181
espionage, passive fingerprinting

for, 146
Ethernet protocol, 89–90

components of, 76–78
frame padding in, 92–94
OSI model for, 91–92
switched networks. See switched

networks
Euler’s Theorem, 6
execution in instruction sets

stages, 37–38
times, 41–43

F
factorization in encryption, 5–6
Felten, Edward, 216
fetch models in HTTP, 206
Fielding, Roy T., 203
File Transfer Protocol (FTP),

address translation with,
179–80

filters. See firewalls
FIN scans, 176
fingerprinting, passive. See passive

fingerprinting
firewalls, 173

address translation in, 178–80
DF bit controversy, 184–86
in idle scanning, 196
masquerading in, 180–81
packet rewriting in, 178–79

for passive analysis prevention,
170

segment sizes with, 181–83
stateless filtering in, 174–78
unexpected responses with,

183–84
flags

information in, 105–6
in IP headers, 122–23
in TCP headers, 131

flip-flop designs, 31–32
fourth layer protocol identifier

field, 121
fragmentation

IP packet, 122–23, 147–50
in stateless filtering, 175–76

frames in Ethernet protocol
information in, 90
padding, 92–94

FreeBSD 4.2, sequence number
attractor patterns, 162

Freeh, Vincent W., 228
frequency shift keying (FSK), 69–71
Frystyk, Henrik, 203
FTP (File Transfer Protocol),

address translation with,
179–80

G
GET requests in HTTP, 203–4
global attack trends, direct

observation tactics for,
254–56

Globally Unique Identifier (GUID)
fields, 54

graphics
sequence number attractor

patterns, 160–65
for software identity, 212–14

H
handshakes

in HTTP, 206
in TCP, 127–30
272 INDEX

hardware addresses, 54–55
hardware random number

generators, 18–19
hashing, 11, 13
header length field, 119–20
headers

HTTP, 204–5, 208–11
ICMP, 134–35
IP, 118–24
TCP, 126–33
UDP, 125–26

Heen, Olivier, 141
Hellman, Martin, 4
Hidden Markov Model, 16–17
hijacking, 147
honeypots, 144
HP/UX 11, sequence number

attractor patterns, 162
HTML (HyperText Markup

Language), 202–3
HTTP (HyperText Transfer

Protocol), 203–5
behavioral analysis for, 212–17
content caching for, 207–11
cookies for, 209–11
latency reduction for, 205–7
ports for, 180
privacy in, 216–17

hubs, 77

I
I/O interrupts, 8–10
ICMP (Internet Control Message

Protocol)
headers in, 134–35
for parasitic storage, 233
in PMTUD failure, 184–85

identification numbers
in idle scanning, 196
in IP headers, 123–24
in passive fingerprinting.

See passive fingerprinting
profiling from, 198

identity
in address spoofing, 257

attack origin, 245–47
in authoring software, 54–55
software, 199–200

behavioral analysis for, 212–17
impersonating, 200–202

idle scanning, 195–97
If-Modified-Since headers, 208,

210–11
impersonating software identity,

200–202
IMUL (integer-signed

multiplication opcode),
44–48

incident logging, 144
input controller chips, 9–10
input timing of keystrokes, 14–19
instruction fetch/decode stage, 38
instruction pointers, 32
instruction sets, 32–34

execution stages in, 37–38
execution times in, 41–43
memory in, 38–39
pipelining in, 39–41
simplicity in, 35–36
task splitting in, 36–37

integer-signed multiplication
opcode (IMUL), 44–48

inter-keystroke timing, 15–19, 105–6
Internet, 113–14

address space on, 116–18
ICMP, 134–35
IP. See IP (Internet Protocol)
for parasitic storage, 240–41
passive fingerprinting. See passive

fingerprinting
routing on, 115–18
TCP, 126–33
topology of, 244

mapping, 244–45
for origin identification,

245–47
for stress analysis, 248–51
for triangulation, 248–49

UDP, 125–26
INDEX 273

Internet Control Message Protocol
(ICMP)

headers in, 134–35
for parasitic storage, 233
in PMTUD failure, 184–85

Internet Explorer browser
behavioral analysis for, 213–14
development of, 203

Internet Protocol. See IP
interrupts

I/O, 8–10
in inter-keystroke timing, 17

IP (Internet Protocol), 96, 114–15
address space, 116–18
fragmentation in, 147–50
header structure in, 118–24
in passive fingerprinting, 135–41
port scanning in, 194–97
reliability of, 124–25
spoofing. See spoofing

IP identification numbers
in idle scanning, 196
profiling from, 198

IP Personality, 146
IRIX 6.5, sequence number

attractor patterns, 164
ISNProber tool, 169–70
ISNs. See sequence numbers

J
jam code mechanisms, 76
Java applets, 231–32
Jeong, Hawoong, 228
Jun, Benjamin, 19

K
Kaminsky, Dan, 171–72
keyboard and keystrokes, 3–4

entropy in, 11–14, 18
input timing in, 14–19
interrupts for, 8–10
one-way shortcut functions for,

11
randomness in, 4–8

remote timing attacks, 19–20
reproducible unpredictability in,

20
typing-pattern based biometrics

for, 105–6
keys in encryption, 6
Khan, Saqib A., 233
Kocher, Paul, 19, 42
Krawczyk, H., 221

L
Last-Modified headers, 208–11
latency reduction for HTTP, 205–7
leaks

Ethernet frame, 92–94
memory, 55–56, 233

lights and LEDs, 78–79
disk-activity, 88
implications of, 80
protecting, 85–87
snooping devices for, 81–84

link-level protocols, 91
linked documents, 202
load balances, 179
logging

on Apache servers, 212
passive fingerprinting for, 144

logic. See Boolean logic
logical indicators, 105–6
Loveless, Mark, 246–47
LPT interface for LED snooping,

82–84
Lughry, Joe, 80

M
MAC (Media Access Control)

addresses
in Ethernet protocol, 90, 96–97
spoofing, 100

Mac OS 9, sequence number
attractor patterns, 163

malformed data detection, 259–60
Manchester encoding, 67–69
mapping, Internet, 244–45
274 INDEX

masquerading, 179–81
Maximum Segment Size (MSS)

with firewalls, 181–83
in passive fingerprinting, 139–40
in TCP headers, 132

maximum transmission units
(MTUs)

field for, 120
with firewalls, 181–82
in passive fingerprinting, 139

McLachlan, Donald, 246–47
Media Access Control (MAC)

addresses
in Ethernet protocol, 90, 96–97
spoofing, 100

Memex device, 202
memory

flip-flops for, 31–32
in instruction sets, 38–39, 41
and processing speed, 38

memory buffers for parasitic
storage, 234–37

memory leaks, 233
mercury delay line memory, 233
mesh-type topology data for

triangulation, 248–49
message code field, 134
message type field, 134
meta-information storage, 54–55
metrics for attackers, 220–23
MF (more fragments) field, 122
Microsoft Word, meta-information

storage for, 55
misdirected data detection, 259–60
modems, 68, 73–74
modulo exponentiation algorithm,

43
modulo operator, 7
monitors, electromagnetic radiation

from, 52–53
more fragments (MF) field, 122
Morris, Robert T., 147
Mosaic browser, 203
Mozilla browser, 203
MSS (Maximum Segment Size)

with firewalls, 181–83

in passive fingerprinting, 139–40
in TCP headers, 132

MTUs (maximum transmission
units)

field for, 120
with firewalls, 181–82
in passive fingerprinting, 139

multicycle design, 36–37
multiplicands, 46
multipliers, 46
must be zero field, 138

N
NAND gates and operators, 24,

27–28
NAT in firewalls, 178–79
Navigator browser

behavioral analysis for, 213–14
development of, 203

Nehemiah random number
generators, 19

Netscape Navigator browser
behavioral analysis for, 213–14
development of, 203

NetWare 6, sequence number
attractor patterns, 164

network addresses, 117–18
network reconnaissance and

mapping, 151
networks. See Ethernet protocol;

Internet; switched networks
Nimda worm, 257
NMAP, 146, 223
noise for computational effort

analysis, 48
non-deterministic polynomial (NP)

problems, 228–32
Non-Return to Zero (NRZ)

encoding scheme, 66–67
nonelectric computers, 26–27
nonzero used field, 138
NOP option in TCP headers, 133
NOR gates and operators, 24, 27

in computer design, 28
mechanical gate for, 26
INDEX 275

NOT gates and operators, 22
for calculations, 28–29
in computer design, 28
and DeMorgan’s law, 22–23

NP (non-deterministic polynomial)
problems, 228–32

NRZ (Non-Return to Zero)
encoding scheme, 66–67

NUL scans, 176

O
observations

of attackers, 223–24
direct, 254–56

offset parameters in IP headers,
122–23

Olsson, Mikael, 179
one-way shortcut functions for

keystrokes, 11
OpenVMS 7.2, sequence number

attractor patterns, 165
Opera browser, behavioral analysis

for, 213–14
operand fetch/decode stage, 38
operands in instruction sets, 41
optical emanations, 78–79

implications of, 80
protecting, 85–87
snooping devices for, 81–84

optimization
early-out, 44–46
passive fingerprinting for, 144

option ordering in passive
fingerprinting, 140

OR gates and operators, 22
in computer design, 27–28
and DeMorgan’s law, 22–23
for flip-flops, 31–32

origin identification, topology data
for, 245–47

OSI model, 91–92
out-of-sync traffic in stateless

filtering, 176–77
overflow, CAM, 100
overlapping fragment attacks, 175

P
p0f tool, 142–45, 190
packet firewalls. See firewalls
packet fragmentation, 122–23,

147–50
packet rewriting, 178–79
padding in Ethernet, 92–94
parasitic storage, 232–33

applications of, 241–42
disk queues for, 237–39
feasibility of, 234–41
Internet for, 240–41
memory buffers for, 234–37
user accessibility in, 239–40

passive fingerprinting
applications of, 143–46
benefits and liabilities of, 151–53
ISNProber for, 169–70
in practice, 142–43
preventing analysis of, 146, 170
techniques, 135–41

patterns
in instruction sets, 42
keyboard input, 14–19
sequence number attractor,

160–65, 169, 171
for software identity, 212–14

performance
in HTTP, 207–9
with PMTUD, 184–86

personal data, program release of,
106–7

perspective attacks, 196
phase shift keying, 69–71
phase-space patterns, 169, 171
phototransistors, 81–82
PICs (programmable interrupt

controllers), 8
ping of death, 185
pipelining, 39–41
plain-text messages, sequence

number protection in. See
sequence numbers

PMTU discovery, 123
failure scenarios, 184–86
in passive fingerprinting, 137
276 INDEX

policy enforcement, passive
fingerprinting for, 144–45

Pool, Martin, 210
port addressing, 125–26
port scanning, 194–95

idle scanning, 195–97
randomness in, 220–23

ports in TCP headers, 130
Postel, Jon, 147
preattack assessment, passive

fingerprinting for, 145
prime numbers in encryption, 5–6
principle of least astonishment, 106
privacy and privacy invasions

behavioral analysis for, 216–17
and passive fingerprinting, 145,

152
private keys in encryption, 6
PRNGs (pseudorandom number

generators), 6
for port scanning, 221–23
security of, 7, 10

processor speed, memory in, 38–39
profiles

from IP identification numbers,
198

passive fingerprinting for, 145
roaming, 106–7

programmable interrupt controllers
(PICs), 8

protocol version field, 119
proxy devices, 146
pseudorandom number generators

(PRNGs), 6
for port scanning, 221–23
security of, 7, 10

PSYLock product, 105–6
public key cryptography, 4–6
pulse stretching for LEDs, 85–87
Purczynski, Wojciech, 234

Q
QAM (quadrature amplitude

modulation), 72
queues for parasitic storage, 237–39

R
radio frequency (RF) emissions,

52–53
random delays for computational

effort analysis, 48
random memory, leaking, 55–56
random number generators

automated, 6–7
hardware, 18–19
for port scanning, 221–23
security of, 7–8

randomness
in keyboard and keystrokes, 4–8
in port scanning, 220–23

Raymond, Eric S., 79
reconnaissance

address spoofing in, 257
passive fingerprinting for, 146

reconstructing data, timing patterns
in, 42

Reed, Tracy, 108–9
reference clocks in data

transmission, 66
reliability

in IP, 124–25
with PMTUD, 184–86

remote endpoints, 114
remote timing attacks, 19–20
reproducible unpredictability in

keystrokes, 20
response rates in passive

fingerprinting, 141
RF (radio frequency) emissions,

52–53
Rivest, Ron, 5
roaming profiles, 106–7
Roualland, Gael, 146
routing on Internet, 115–18
RS-232 protocol, 74
RSA algorithm, 42–43
RSA encryption, 5
RST flags in TCP, 128
RST packets

in address spoofing, 257
in DoS attacks, 258
INDEX 277

RST packets, continued
in idle scanning, 195–96
in stateless filtering, 183–84

S
Saffroy, Jean-Marc, 146
SAT (satisfiability) equations,

228–32
scan codes, keyboard, 9–10
Schneider, Michael, 216
search engines in zero-effort

exploits, 58–61
Secure Shell (SSH), 6

in inter-keystroke timing, 17
password length in, 106

Secure Sockets Layer (SSL), 6
security

passive fingerprinting for, 145
of random number generators,

7–8
segment sizes

with firewalls, 181–83
in passive fingerprinting, 139–40
in TCP headers, 132

selective acknowledgment options
in TCP headers, 132–33

sequence numbers
delayed coordinates for, 156–68
generating, 155–56
history of, 154–55
in IP fragmentation, 147–50
ISNProber tool for, 169–70
in TCP headers, 128, 131

sequential fetch model in HTTP,
206

serial data transmissions, 67–68
serial fetch model in HTTP, 206
Server Message Block (SMB)

protocol, 107
Set-Cookie headers, 209–10
settings ordering in passive

fingerprinting, 140
SGML (Standard Generalized

Markup Language), 203
Shamir, Adi, 5, 49

shift values in phase shift keying, 70
shortcut functions for keystrokes, 11
signal changes in transmitting data,

68–73
Simple Network Management

Protocol (SNMP), 105
simplicity in instruction sets, 35–36
size of Ethernet frames, 92–94
Skitter Internet map, 244
Slapper worm, 256
smart cards, 49
SMB (Server Message Block)

protocol, 107
Smurf attacks, 186
SNMP (Simple Network

Management Protocol), 105
snooping devices for LEDs, 81–84
social considerations

in parasitic storage, 241–42
in zero-effort exploits, 61

software identity, 199–200
behavioral analysis for, 212–17
impersonating, 200–202

source address field, 120–21
source port shifts, 181
source ports

in passive fingerprinting, 138–39
in TCP headers, 130

Spanning Tree Protocol (SPT),
99–101

Spitzner, Lance, 144
splitting tasks in instruction sets,

36–37
spoofing

in connection hijacking, 147
identity protection in, 257
in idle scanning, 196
MAC, 100
origin identification in, 245–47
and TCP handshaking, 129–30

SPT (Spanning Tree Protocol),
99–101

spy gear for LEDs, 81–84
SQLSnake worm, 255
SRAM (static RAM), 39
278 INDEX

SSH (Secure Shell) protocol, 6, 106
in inter-keystroke timing, 17
password length in, 106

SSL (Secure Sockets Layer), 6
stages, execution, 37–38
Standard Generalized Markup

Language (SGML), 203
standards in data transmission,

69–73
stateful packet filters, 170, 177–78
stateful tracking, unexpected

responses in, 183–84
stateless filtering

and fragmentation, 175–76
and out-of-sync traffic, 176–77

states and state transition tables,
33–35

static buffers
for Ethernet frames, 94
URG and ACK values in, 190–92

static RAM (SRAM), 39
statistical data, passive

fingerprinting for, 144
Stewart, Joe, 171
storage

of meta-information, 54–55
parasitic. See parasitic storage

stress analysis, network, 248–51
switched networks, 95–96

address resolution and switching
in, 96–97

architecture attacks on, 99–101
protecting, 101
SPT in, 99–101
trunking in, 98, 100–101
VLANs, 97–98

switches, 77–78
symmetrical cryptography, 5
SYN flags and requests in TCP,

127–28
SYN packets

in address spoofing, 257
in DoS attacks, 258
in idle scanning, 195–96
in stateless filtering, 175–77

synchronization of data
transmission, 69–71

system diagnostics, timing attacks
in, 20

system entropy pools, 12–13
system times in port scanning

attacks, 222
Szymanski, Jacek P., 187

T
task splitting in instruction sets,

36–37
TCP (Transmission Control

Protocol)
fragmenting in, 148–50
headers in, 126–33

TCP/IP, sequence numbers in.
See sequence numbers

telephone lines, 68
televisions, electromagnetic

radiation from, 52–53
TEMPEST (Transient

Electromagnetic Pulse
Emanation), 52–53

time-delayed coordinates for
sequence numbers, 156–68

time stamps
in passive fingerprinting, 140–41,

153
in TCP headers, 133

time to live (TTL)
in IP headers, 121
for origin identification, 246–47
in passive fingerprinting, 136

time zones in port scanning attacks,
222

timing
in data transmission, 67
of keystrokes, 14–20, 105–6
in passive fingerprinting, 141

timing patterns in instruction sets,
42

title fields, 55
INDEX 279

topology, Internet, 244
mapping, 244–45
for origin identification, 245–47
for stress analysis, 248–51
for triangulation, 248–49

total packet length field, 120
trace-back scenarios, 249–50
traceroute technique, 121
transactional TCP (T/TCP) option,

133
Transient Electromagnetic Pulse

Emanation (TEMPEST),
52–53

transistors
in logic gates, 27–28
phototransistors, 81–82

Transmission Control Protocol
(TCP)

fragmenting in, 148–50
headers in, 126–33

transmitting data, 66–68
collisions in, 75–76
current technology, 73
Ethernet protocol in, 76–78
modems in, 74
signal transitions in, 68–73

triangulation, topology data for,
248–49

true random number generators
(TRNGs), 18–19

trunking in switched networks, 98,
100–101

Ts’o, Theodore, 14
T/TCP (transactional TCP) option,

133
TTL (time to live)

in IP headers, 121
for origin identification, 246–47
in passive fingerprinting, 136

Turing, Alan, 4
Turing machines, 32–34

execution stages in, 37–38
execution times in, 41–43
memory in, 38–39
pipelining in, 39–41

simplicity in, 35–36
task splitting in, 36–37

Turing tarpits, 35
type of service field

in IP headers, 120
in passive fingerprinting, 137–38

typing. See keyboard and keystrokes

U
UDP (User Datagram Protocol)

address translation with, 179–80
headers in, 125–26

Umphress, David A., 80
undo information, meta-

information storage of, 55
unexpected responses in stateful

tracking, 183–84
UNICOS 10.0.0.8, sequence

number attractor patterns,
165

universal operators for Boolean
logic, 22–25

universal resource identifiers
(URIs), 203

Universal Serial Bus (USB), 74
Universal Serial Bus devices, activity

LEDs for, 88
Universal Turing Machines

(UTMs), 34
unpredictability, reproducible, 20
URG (urgent) pointers

in passive fingerprinting, 139–40
in TCP headers, 131–32

URG values in buffers, 190–92
URIs (universal resource

identifiers), 203
USB (Universal Serial Bus), 74
USB devices, activity LEDs for, 88
user accessibility in parasitic

storage, 239–40
User-Agent program, 200
User Datagram Protocol (UDP)

address translation with, 179–80
headers in, 125–26
280 INDEX

UTMs (Universal Turing
Machines), 34

V
V.22bis standard, 72
V.32 standard, 72
V.34 standard, 72
V.42 standard, 73
van Eck, Wim, 52
variable time algorithms, 43
versions

in HTTP requests, 204
in IP headers, 119

Veysset, Franck, 141
virtual LANs (VLANs), 97–98
Viterbi algorithm, 16–17
volatile computing, 241

W
warflying and wardriving, 108–9
web browsers

behavioral analysis for, 212–17
development of, 203

WEP (Wired Equivalent Privacy),
107–8

Wget browser, 213–14
wi-fi vulnerabilities, 107–9
window scale

in passive fingerprinting, 140
in TCP headers, 132

window size
in passive fingerprinting, 139
in TCP headers, 131

Windows 98, sequence number
attractor patterns, 161

Windows NT 4.0 SP3, sequence
number attractor patterns,
163

wire-pair serial transmissions, 68
Wired Equivalent Privacy (WEP),

107–8
wireless networks, 107–9

witness hosts in idle scanning,
195–97

Wood, Preston, 224
Word, meta-information storage

for, 55
World Wide Web (WWW) history,

202–3
worms

propagation of, 254–57
in zero-effort exploits, 58–59

X
X-Mailer program, 200
Xmas scans, 176
XOR gates, 28–30

Z
zero-effort exploits, 58–61
INDEX 281

The Electronic Frontier Foundation (EFF) is the leading
organization defending civil liberties in the digital world. We defend
free speech on the Internet, fight illegal surveillance, promote the
rights of innovators to develop new digital technologies, and work to
ensure that the rights and freedoms we enjoy are enhanced —
rather than eroded — as our use of technology grows.

EFF has sued telecom giant AT&T for giving the NSA unfettered access to the
private communications of millions of their customers. eff.org/nsa

EFF’s Coders’ Rights Project is defending the rights of programmers and security
researchers to publish their findings without fear of legal challenges.
eff.org/freespeech

EFF's Patent Busting Project challenges overbroad patents that threaten
technological innovation. eff.org/patent

EFF is fighting prohibitive standards that would take away your right to receive and
use over-the-air television broadcasts any way you choose. eff.org/IP/fairuse

EFF has developed the Switzerland Network Testing Tool to give individuals the tools
to test for covert traffic filtering. eff.org/transparency

EFF is working to ensure that international treaties do not restrict our free speech,
privacy or digital consumer rights. eff.org/global

PRIVACY

FREE SPEECH

INNOVATION

FAIR USE

TRANSPARENCY

INTERNATIONAL

EFF is a member-supported organization. Join Now! www.eff.org/support

U P D A T E S

Visit http://www.nostarch.com/silence.htm for updates, errata, and other
information.

	About the Author
	Foreword
	Introduction
	A Few Words about Me
	About This Book

	PART I: THE SOURCE
	1: I Can Hear You Typing
	The Need for Randomness
	Automated Random Number Generation

	The Security of Random Number Generators
	I/O Entropy: This Is Your Mouse Speaking
	Delivering Interrupts: A Practical Example
	One-Way Shortcut Functions
	The Importance of Being Pedantic

	Entropy Is a Terrible Thing to Waste
	Attack: The Implications of a Sudden Paradigm Shift
	A Closer Look at Input Timing Patterns
	Immediate Defense Tactics
	Hardware RNG: A Better Solution?

	Food for Thought
	Remote Timing Attacks
	Exploiting System Diagnostics
	Reproducible Unpredictability

	2: Extra Efforts Never Go Unnoticed
	Boole’s Heritage
	Toward the Universal Operator
	DeMorgan at Work
	Convenience Is a Necessity
	Embracing the Complexity

	Toward the Material World
	A Nonelectric Computer
	A Marginally More Popular Computer Design
	Logic Gates

	From Logic Operators to Calculations
	From Electronic Egg Timer to Computer
	Turing and Instruction Set Complexity
	Functionality, at Last
	Holy Grail: The Programmable Computer
	Advancement through Simplicity
	Split the Task
	Execution Stages
	The Lesser Memory
	Do More at Once: Pipelining
	The Big Problem with Pipelines

	Implications: Subtle Differences
	Using Timing Patterns to Reconstruct Data
	Bit by Bit . . .

	In Practice
	Early-Out Optimization
	Working Code-Do It Yourself

	Prevention
	Food for Thought

	3: Ten Heads of the Hydra
	Revealing Emissions: TEMPEST in the TV
	Privacy, Limited
	Tracking the Source: “He Did It!”
	“Oops” Exposure: *_~1q'@@ . . . and the Password Is . . .

	4: Working for the Common Good
	PART II: SAFE HARBOR
	5: Blinkenlights
	The Art of Transmitting Data
	From Your Email to Loud Noises . . . Back and Forth
	The Day Today
	Sometimes, a Modem Is Just a Modem
	Collisions Under Control
	Behind the Scenes: Wiring Soup and How We Dealt with It
	Blinkenlights in Communications

	The Implications of Aesthetics
	Building Your Own Spy Gear . . .
	. . . And Using It with a Computer
	Preventing Blinkenlights Data Disclosure-and Why It Will Fail
	Food for Thought

	6: Echoes of the Past
	Building the Tower of Babel
	The OSI Model

	The Missing Sentence
	Food for Thought

	7: Secure in Switched Networks
	Some Theory
	Address Resolution and Switching
	Virtual Networks and Traffic Management

	Attacking the Architecture
	CAM and Traffic Interception
	Other Attack Scenarios: DTP, STP, Trunks

	Prevention of Attacks
	Food for Thought

	8: Us versus Them
	Logical Blinkenlights and Their Unusual Application
	Show Me Your Typing, and I Will Tell You Who You Are

	The Unexpected Bits: Personal Data All Around
	Wi-Fi Vulnerabilities

	PART III: OUT IN THE WILD
	9: Foreign Accent
	The Language of the Internet
	Naive Routing
	Routing in the Real World
	The Address Space
	Fingerprints on the Envelope

	Internet Protocol
	Protocol Version
	The Header Length Field
	The Type of Service Field (Eight Bits)
	The Total Packet Length (16 Bits)
	The Source Address
	The Destination Address
	The Fourth Layer Protocol Identifier
	Time to Live (TTL)
	Flags and Offset Parameters
	Identification Number
	Checksum

	Beyond Internet Protocol
	User Datagram Protocol
	Introduction to Port Addressing
	UDP Header Summary

	Transmission Control Protocol Packets
	Control Flags: The TCP Handshake
	Other TCP Header Parameters
	TCP Options

	Internet Control Message Protocol Packets
	Enter Passive Fingerprinting
	Examining IP Packets: The Early Days
	Initial Time to Live (IP Layer)
	The Don’t Fragment Flag (IP Layer)
	The IP ID Number (IP Layer)
	Type of Service (IP Layer)
	Nonzero Unused and Must Be Zero Fields (IP and TCP Layers)
	Source Port (TCP Layer)
	Window Size (TCP Layer)
	Urgent Pointer and Acknowledgment Number Values (TCP Layer)
	Options Order and Settings (TCP Layer)
	Window Scale (TCP Layer, Option)
	Maximum Segment Size (TCP Layer, Option)
	Time-Stamp Data (TCP Layer, Option)
	Other Passive Fingerprinting Venues

	Passive Fingerprinting in Practice
	Exploring Passive-Fingerprinting Applications
	Collecting Statistical Data and Incident Logging
	Content Optimization
	Policy Enforcement
	Poor Man’s Security
	Security Testing and Preattack Assessment
	Customer Profiling and Privacy Invasion
	Espionage and Covert Reconnaissance

	Prevention of Fingerprinting
	Food for Thought: The Fatal Flaw of IP Fragmentation
	Breaking TCP into Fragments

	10: Advanced Sheep-Counting Strategies
	Benefits and Liabilities of Traditional Passive Fingerprinting
	A Brief History of Sequence Numbers
	Getting More Out of Sequence Numbers
	Delayed Coordinates: Taking Pictures of Time Sequences
	Pretty Pictures: TCP/IP Stack Gallery
	Attacking with Attractors
	Back to System Fingerprinting
	ISNProber-Theory in Action

	Preventing Passive Analysis
	Food for Thought

	11: In Recognition of Anomalies
	Packet Firewall Basics
	Stateless Filtering and Fragmentation
	Stateless Filtering and Out-of-Sync Traffic
	Stateful Packet Filters
	Packet Rewriting and NAT
	Lost in Translation

	The Consequences of Masquerading
	Segment Size Roulette
	Stateful Tracking and Unexpected Responses
	Reliability or Performance: The DF Bit Controversy
	Path MTU Discovery Failure Scenarios
	The Fight against PMTUD, and Its Fallout

	Food for Thought

	12: Stack Data Leaks
	Kristjan’s Server
	Surprising Findings
	Revelation: Phenomenon Reproduced
	Food for Thought

	13: Smoke and Mirrors
	Abusing IP: Advanced Port Scanning
	Tree in the Forest: Hiding Yourself
	Idle Scanning

	Defense against Idle Scanning
	Food for Thought

	14: Client Identification: Papers, Please!
	Camouflage
	Approaching the Problem
	Towards a Solution

	A (Very) Brief History of the Web
	A HyperText Transfer Protocol Primer
	Making HTTP Better
	Latency Reduction: A Nasty Kludge
	Content Caching
	Managing Sessions: Cookies
	When Cookies and Caches Mix
	Preventing the Cache Cookie Attack

	Uncovering Treasons
	A Trivial Case of Behavioral Analysis
	Giving Pretty Pictures Meaning
	Beyond the Engine . . .
	. . . And Beyond Identification

	Prevention
	Food for Thought

	15: The Benefits of Being a Victim
	Defining Attacker Metrics
	Protecting Yourself: Observing Observations
	Food for Thought

	PART IV: THE BIG PICTURE
	16: Parasitic Computing, or How Pennies Add Up
	Nibbling at the CPU
	Practical Considerations
	Parasitic Storage: The Early Days
	Making Parasitic Storage Feasible
	Applications, Social Considerations, and Defense
	Food for Thought

	17: Topology of the Network
	Capturing the Moment
	Using Topology Data for Origin Identification
	Network Triangulation with Mesh-Type Topology Data
	Network Stress Analysis
	Food for Thought

	18: Watching the Void
	Direct Observation Tactics
	Attack Fallout Traffic Analysis
	Detecting Malformed or Misdirected Data
	Food for Thought

	Closing Words
	Bibliographic Notes
	Index
	Updates

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /UseDeviceIndependentColor
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 100
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 100
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on '[Smallest File Size]'] Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks true
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

