
Eliminating security holes in iOS apps is
critical for any developer who wants to pro-
tect their users from the bad guys. In iOS
Application Security, mobile security expert
David Thiel reveals common iOS coding mis-
takes that create serious security problems
and shows you how to find and fix them.

After a crash course on iOS application
structure and Objective-C design patterns,
you’ll move on to spotting bad code and
plugging the holes. You’ll learn about:

z	 The iOS security model and the limits of its
built-in protections

z	 The myriad ways sensitive data can leak
into places it shouldn’t, such as through the
pasteboard

z	 How to implement encryption with the
Keychain, the Data Protection API, and
CommonCrypto

z	 Legacy flaws from C that still cause
problems in modern iOS applications

z	 Privacy issues related to gathering user
data and how to mitigate potential pitfalls

Don’t let your app’s security leak become
another headline. Whether you’re looking to
bolster your app’s defenses or hunting bugs in
other people’s code, iOS Application Security
will help you get the job done well.

About the Author
David Thiel has nearly 20 years of computer
security experience. His research and book
Mobile Application Security (McGraw-Hill)
helped launch the field of iOS application secu-
rity, and he has presented his work at security
conferences like Black Hat and DEF CON. An
application security consultant for years
at iSEC Partners, Thiel now works for the
Internet.org Connectivity Lab.

“The most thorough and thoughtful treatment
of iOS security that you can find today.”

—Alex Stamos, Chief Security Officer at Facebook

TH E F I N EST I N G E E K E NTE RTA I N M E NT™
www.nostarch.com

Thiel

iOS Application
Security

iOS Application Security

The Definitive Guide
for Hackers and Developers

“I LIE FLAT.” This book uses a durable binding that won’t snap shut.

$49.95 ($57.95 CDN)	 Shelve In: Computers/Security

Covers iOS 9

David Thiel
Foreword by Alex Stamos

The Definitive Guide for Hackers and Developers

iOS Application SEcurity

i O S A p p l i c a t i o n
S e c u r i t y

T h e D e f i n i t i v e G u i d e
f o r H a c k e r s a n d

D e v e l o p e r s

by David Thiel

San Francisco

iOs Application Security. Copyright © 2016 by David Thiel.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

Printed in USA

First printing

20 19 18 17 16   1 2 3 4 5 6 7 8 9

ISBN-10: 1-59327-601-X
ISBN-13: 978-1-59327-601-0

Publisher: William Pollock
Production Editor: Alison Law
Cover Illustration: Garry Booth
Interior Design: Octopod Studios
Developmental Editor: Jennifer Griffith-Delgado
Technical Reviewer: Alban Diquet
Copyeditor: Kim Wimpsett
Compositor: Alison Law
Proofreader: James Fraleigh

For information on distribution, translations, or bulk sales, please contact No Starch Press, Inc. directly:

No Starch Press, Inc.
245 8th Street, San Francisco, CA 94103
phone: 415.863.9900; info@nostarch.com
www.nostarch.com

Library of Congress Cataloging-in-Publication Data

Names: Thiel, David, 1980- author.
Title: iOS application security : the definitive guide for hackers and
 developers / by David Thiel.
Description: San Francisco : No Starch Press, [2016] | Includes index.
Identifiers: LCCN 2015035297| ISBN 9781593276010 | ISBN 159327601X
Subjects: LCSH: Mobile computing--Security measures. | iPhone
 (Smartphone)--Mobile apps--Security measures. | iPad (Computer)--Security
 measures. | iOS (Electronic resource) | Application software--Development.
 | Objective-C (Computer program language)

Classification: LCC QA76.9.A25 T474 2016 | DDC 004--dc23
LC record available at http://lccn.loc.gov/2015035297

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other
product and company names mentioned herein may be the trademarks of their respective owners. Rather
than use a trademark symbol with every occurrence of a trademarked name, we are using the names only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution
has been taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly or
indirectly by the information contained in it.

To whomever I happen to be dating right now.

And to my parents, for attempting to restrict
my computer access as a child.

Also cats. They’re pretty great.

About the Author
David Thiel has nearly 20 years of computer security experience.
Thiel’s research and book Mobile Application Security (McGraw-Hill)
helped launch the field of iOS application security, and he has pre-
sented his work at security conferences like Black Hat and DEF CON.
An application security consultant for years at iSEC Partners, Thiel
now works for the Internet.org Connectivity Lab.

About the Technical Reviewer
Alban Diquet is a software engineer and security researcher who special-
izes in security protocols, data privacy, and mobile security, with a focus
on iOS. Diquet has released several open source security tools, such as
SSLyze, iOS SSL Kill Switch, and TrustKit. Diquet has also presented at
various security conferences, including Black Hat, Hack in the Box, and
Ruxcon.

BRIEF CONTENTS

Foreword by Alex Stamos . xix
Acknowledgments . xxi
Introduction .xxiii

PART I: IOS FUNDAMENTALS

Chapter 1: The iOS Security Model . 3
Chapter 2: Objective-C for the Lazy . 13
Chapter 3: iOS Application Anatomy . 27

PART II: SECURITY TESTING

Chapter 4: Building Your Test Platform . 41
Chapter 5: Debugging with lldb and Friends . 61
Chapter 6: Black-Box Testing . 77

PART III: SECURITY QUIRKS OF THE COCOA API

Chapter 7: iOS Networking .107
Chapter 8: Interprocess Communication. .131
Chapter 9: iOS-Targeted Web Apps. .147
Chapter 10: Data Leakage .161
Chapter 11: Legacy Issues and Baggage from C .189
Chapter 12: Injection Attacks .199

PART IV: KEEPING DATA SAFE

Chapter 13: Encryption and Authentication .211
Chapter 14: Mobile Privacy Concerns .233

Index. .249

CONTENTS IN DETA IL

FOREWORD by Alex Stamos xix

ACKNOWLEDGMENTS xxi

INTRODUCTION xxiii
Who This Book Is For . xxiv
What’s in This Book . xxiv

How This Book Is Structured . xxiv
Conventions This Book Follows . xxvi
A Note on Swift . xxvi

Mobile Security Promises and Threats . xxvii
What Mobile Apps Shouldn’t Be Able to Do . xxvii
Classifying Mobile Security Threats in This Book . xxviii

Some Notes for iOS Security Testers . xxx

PART I
IOS FUNDAMENTALS

1
THE IOS SECURITY MODEL 3
Secure Boot . 4
Limiting Access with the App Sandbox . 4
Data Protection and Full-Disk Encryption . 5

The Encryption Key Hierarchy . 6
The Keychain API . 7
The Data Protection API . 7

Native Code Exploit Mitigations: ASLR, XN, and Friends . 8
Jailbreak Detection . 9
How Effective Is App Store Review? . 10

Bridging from WebKit . 11
Dynamic Patching . 11
Intentionally Vulnerable Code . 12
Embedded Interpreters . 12

Closing Thoughts . 12

2
OBJECTIVE-C FOR THE LAZY 13
Key iOS Programming Terminology . 14
Passing Messages . 14
Dissecting an Objective-C Program . 15

Declaring an Interface . 15
Inside an Implementation File . 16

Specifying Callbacks with Blocks . 18
How Objective-C Manages Memory . 18
Automatic Reference Counting . 19
Delegates and Protocols . 20

Should Messages . 20
Will Messages . 20
Did Messages . 20
Declaring and Conforming to Protocols . 21

The Dangers of Categories . 22
Method Swizzling . 23
Closing Thoughts . 25

3
IOS APPLICATION ANATOMY 27
Dealing with plist Files . 29
Device Directories . 32
The Bundle Directory . 33
The Data Directory . 34

The Documents and Inbox Directories . 34
The Library Directory . 35
The tmp Directory . 37

The Shared Directory . 37
Closing Thoughts . 38

PART II
SECURITY TESTING

4
BUILDING YOUR TEST PLATFORM 41
Taking Off the Training Wheels . 41
Suggested Testing Devices . 42
Testing with a Device vs. Using a Simulator . 43
Network and Proxy Setup . 43

Bypassing TLS Validation . 44
Bypassing SSL with stunnel . 46

xii Contents in Detail

Certificate Management on a Device . 47
Proxy Setup on a Device . 48

Xcode and Build Setup . 50
Make Life Difficult . 51
Enabling Full ASLR . 53
Clang and Static Analysis . 54
Address Sanitizer and Dynamic Analysis . 55

Monitoring Programs with Instruments . 55
Activating Instruments . 55
Watching Filesystem Activity with Watchdog . 58

Closing Thoughts . 59

5
DEBUGGING WITH LLDB AND FRIENDS 61
Useful Features in lldb . 62

Working with Breakpoints . 62
Navigating Frames and Variables . 64
Visually Inspecting Objects . 68
Manipulating Variables and Properties . 69
Breakpoint Actions . 70

Using lldb for Security Analysis . 72
Fault Injection . 72
Tracing Data . 74
Examining Core Frameworks . 74

Closing Thoughts . 75

6
BLACK-BOX TESTING 77
Installing Third-Party Apps . 78

Using a .app Directory . 78
Using a .ipa Package File . 80

Decrypting Binaries . 80
Launching the debugserver on the Device . 81
Locating the Encrypted Segment . 84
Dumping Application Memory . 87

Reverse Engineering from Decrypted Binaries . 89
Inspecting Binaries with otool . 90
Obtaining Class Information with class-dump . 92
Extracting Data from Running Programs with Cycript . 93
Disassembly with Hopper . 94

Defeating Certificate Pinning . 96
Hooking with Cydia Substrate . 97
Automating Hooking with Introspy . 100
Closing Thoughts . 103

Contents in Detail xiii

PART III
SECURITY QUIRKS OF THE COCOA API

7
IOS NETWORKING 107
Using the iOS URL Loading System . 108

Using Transport Layer Security Correctly . 108
Basic Authentication with NSURLConnection . 110
Implementing TLS Mutual Authentication with NSURLConnection 112
Modifying Redirect Behavior . 113
TLS Certificate Pinning . 114

Using NSURLSession . 117
NSURLSession Configuration . 117
Performing NSURLSession Tasks . 118
Spotting NSURLSession TLS Bypasses . 119
Basic Authentication with NSURLSession . 119
Managing Stored URL Credentials . 121

Risks of Third-Party Networking APIs . 122
Bad and Good Uses of AFNetworking . 122
Unsafe Uses of ASIHTTPRequest . 124

Multipeer Connectivity . 125
Lower-Level Networking with NSStream . 127
Even Lower-level Networking with CFStream . 128
Closing Thoughts . 129

8
INTERPROCESS COMMUNICATION 131
URL Schemes and the openURL Method . 132

Defining URL Schemes . 132
Sending and Receiving URL/IPC Requests . 133
Validating URLs and Authenticating the Sender . 134
URL Scheme Hijacking . 136

Universal Links . 137
Sharing Data with UIActivity . 139
Application Extensions . 140

Checking Whether an App Implements Extensions . 141
Restricting and Validating Shareable Data . 142
Preventing Apps from Interacting with Extensions . 143

A Failed IPC Hack: The Pasteboard . 144
Closing Thoughts . 145

xiv Contents in Detail

9
IOS-TARGETED WEB APPS 147
Using (and Abusing) UIWebViews . 147

Working with UIWebViews . 148
Executing JavaScript in UIWebViews . 149

Rewards and Risks of JavaScript-Cocoa Bridges . 150
Interfacing Apps with JavaScriptCore . 150
Executing JavaScript with Cordova . 154

Enter WKWebView . 158
Working with WKWebViews . 158
Security Benefits of WKWebViews . 159

Closing Thoughts . 160

10
DATA LEAKAGE 161
The Truth About NSLog and the Apple System Log . 161

Disabling NSLog in Release Builds . 163
Logging with Breakpoint Actions Instead . 164

How Sensitive Data Leaks Through Pasteboards . 164
Restriction-Free System Pasteboards . 165
The Risks of Custom-Named Pasteboards . 165
Pasteboard Data Protection Strategies . 167

Finding and Plugging HTTP Cache Leaks . 169
Cache Management . 170
Solutions for Removing Cached Data . 171
Data Leakage from HTTP Local Storage and Databases . 174

Keylogging and the Autocorrection Database . 175
Misusing User Preferences . 178
Dealing with Sensitive Data in Snapshots . 178

Screen Sanitization Strategies . 179
Why Do Those Screen Sanitization Strategies Work? . 182
Common Sanitization Mistakes . 183
Avoiding Snapshots by Preventing Suspension . 183

Leaks Due to State Preservation . 184
Secure State Preservation . 185
Getting Off iCloud to Avoid Leaks . 187
Closing Thoughts . 188

11
LEGACY ISSUES AND BAGGAGE FROM C 189
Format Strings . 190

Preventing Classic C Format String Attacks . 191
Preventing Objective-C Format String Attacks . 192

Contents in Detail xv

Buffer Overflows and the Stack . 193
A strcpy Buffer Overflow . 194
Preventing Buffer Overflows . 195

Integer Overflows and the Heap . 196
A malloc Integer Overflow . 197
Preventing Integer Overflows . 198

Closing Thoughts . 198

12
INJECTION ATTACKS 199
Client-Side Cross-Site Scripting . 199

Input Sanitization . 200
Output Encoding . 201

SQL Injection . 203
Predicate Injection . 204
XML Injection . 205

Injection Through XML External Entities . 205
Issues with Alternative XML Libraries . 207

Closing Thoughts . 207

PART IV
KEEPING DATA SAFE

13
ENCRYPTION AND AUTHENTICATION 211
Using the Keychain . 211

The Keychain in User Backups . 212
Keychain Protection Attributes . 212
Basic Keychain Usage . 214
Keychain Wrappers . 217
Shared Keychains . 218
iCloud Synchronization . 219

The Data Protection API . 219
Protection Levels . 220
The DataProtectionClass Entitlement . 223
Checking for Protected Data Availability . 224

Encryption with CommonCrypto . 225
Broken Algorithms to Avoid . 226
Broken Initialization Vectors . 226
Broken Entropy . 227
Poor Quality Keys . 227

Performing Hashing Operations . 228
Ensuring Message Authenticity with HMACs . 229
Wrapping CommonCrypto with RNCryptor . 230

xvi Contents in Detail

Local Authentication: Using the TouchID . 231
How Safe Are Fingerprints? . 232

Closing Thoughts . 232

14
MOBILE PRIVACY CONCERNS 233
Dangers of Unique Device Identifiers . 233

Solutions from Apple . 234
Rules for Working with Unique Identifiers . 235

Mobile Safari and the Do Not Track Header . 236
Cookie Acceptance Policy . 237
Monitoring Location and Movement . 238

How Geolocation Works . 238
The Risks of Storing Location Data . 238
Restricting Location Accuracy . 239
Requesting Location Data . 240

Managing Health and Motion Information . 240
Reading and Writing Data from HealthKit . 241
The M7 Motion Processor . 242

Requesting Permission to Collect Data . 243
Proximity Tracking with iBeacons . 244

Monitoring for iBeacons . 244
Turning an iOS Device into an iBeacon . 246
iBeacon Considerations . 247

Establishing Privacy Policies . 247
Closing Thoughts . 248

INDEX 249

Contents in Detail xvii

F o r e w o r d

Prior to the digital age, people did not typically carry a cache of sensitive personal information
with them as they went about their day. Now it is the person who is not carrying a cell phone,
with all that it contains, who is the exception. . . .

Modern cell phones are not just another technological convenience. With all they contain and
all they may reveal, they hold for many Americans “the privacies of life”. . . . The fact that
technology now allows an individual to carry such information in his hand does not make the
information any less worthy of the protection for which the Founders fought.

— Chief Justice John Roberts, Riley v. California (2014)

Few would argue that the smartphone has been, by far, the most impactful
technological advance of the 21st century. Since the release of the iPhone
in 2007, the number of active smartphones has skyrocketed. As I write this
at the end of 2015, there are nearly 3.4 billion in use; that’s one for just
about half the human population (somewhere over 7.3 billion). Globally,
phones have easily eclipsed all other types of computers used to access the
Internet, and an entire book could be filled with examples of how near-
ubiquitous access is shaping human civilization. Mobile is changing the
world, and has enriched countless lives by bringing widespread access to
educational resources, entertainment, and unprecedented economic oppor-
tunities. In some parts of the world, mobile connectivity and social network-
ing has even led to the downfall of autocratic regimes and the realignment
of societies.

xx Foreword

Even the septuagenarians on the US Supreme Court have recognized
the power of modern mobile computing, setting new legal precedents
with judgements, like Riley v. California quoted above, that recognize that
a smartphone is more than just a device—it is a portal into the private
aspects of everyone’s lives.

Like all technological revolutions, the mobile revolution has its down-
sides. Our ability to connect with the far side of the world does nothing
to improve the way we communicate with those in front of our faces, and
mobile has done nothing to eliminate the world’s long-established economic
disparities. At the same time, as with enterprise computing, personal com-
puting, and networking revolutions, smartphones have introduced new kinds
of potential security flaws, and introduced or reinvented all kinds of secu-
rity and safety issues.

While the proto-smartphones released prior to 2007 brought us several
important technological innovations, it was the subsequent publishing of
rich SDKs and the opening of centralized app stores that turned the new
mobile computers into platforms for third-party innovation. They also
created a whole new generation of developers who now need to adapt the
security lessons of the past to a new, uncertain threat landscape.

In the ten years I have known David Thiel, I have constantly been
impressed by his desire to examine, disassemble, break, and understand
the latest technologies and apply his knowledge to improving the security of
others. David was one of the first people to recognize the fascinating secu-
rity challenges and awesome potential of the iPhone, and since the first days
of what was then the iPhone OS SDK, he has studied the ways app developers
could stumble and expose their users to risk, or rise above the limitations of
the platform to build privacy- and safety-enhancing applications.

This book contains the most thorough and thoughtful treatment of iOS
security that you can find today. Any iOS developer who cares about their
customers should use it to guide their product, architecture, and engineer-
ing decisions and to learn from the mistakes that David has spent his career
finding and fixing.

The smartphone revolution has tremendous potential, but only if we
do the utmost to protect the safety, trust, and privacy of the people holding
these devices, who want to enrich their lives through our inventions.

Alex Stamos
Chief Security Officer, Facebook

A c k n o w l e d g m e n t s

Thanks to Jennifer Griffith-Delgado, Alison Law, Bill Pollock, and the rest
of the No Starch team, as well as Tom Daniels for his major contributions
to Chapter 9, and Alban Diquet and Chris Palmer for their excellent review
and feedback.

INTRODUCTION

Much has been written regarding iOS’s security model,
jailbreaking, finding code execution vulnerabilities
in the base OS, and other security-related characteris-
tics. Other work has focused on examining iOS from
a forensic perspective, including how to extract data
from physical devices or backups as part of criminal
investigations. That information is all useful, but this
book aims to fill the biggest gaps in the iOS literature:
applications.

Little public attention has been given to actually writing secure applica-
tions for iOS or for performing security evaluations of iOS applications. As
a consequence, embarrassing security flaws in iOS applications have allowed
for exposure of sensitive data, circumvention of authentication mechanisms,
and abuse of user privacy (both intentional and accidental). People are
using iOS applications for more and more crucial tasks and entrusting them
with a lot of sensitive information, and iOS application security needs to
mature in response.

As such, my goal is for this book is to be as close as possible to the canon-
ical work on the secure development of iOS applications in particular. iOS
is a rapidly moving target, of course, but I’ve tried to make things as accu-
rate as possible and give you the tools to inspect and adapt to future API
changes.

Different versions of iOS also have different flaws. Since Apple has “end-
of-lifed” certain devices that developers may still want their applications to
run on (like the iPad 1), this book covers flaws present in iOS versions 5.x to
9.0 (the latest at the time of writing) and, where applicable, discusses risks
and mitigations specific to each version.

Who This Book Is For
First, this is a book about security. If you’re a developer or security specialist
looking for a guide to the common ways iOS applications fail at protecting
their users (and the options available to you or a client for patching those
holes), you’re in the right place.

You’ll get the most out of this book if you have at least a little experience
with iOS development or a passing familiarity with how iOS applications
work under the hood. But even without that knowledge, as long as you’re
an experienced programmer or penetration tester who’s not afraid to dig in
to Apple’s documentation as needed, you should be fine. I give a whirlwind
tour of Objective-C and its most commonly used API, Cocoa Touch, in Chap-
ter 2, so if you need some high-level basics or a refresher on the language,
start there.

What’s in This Book
I’ve been performing a wide variety of iOS application security reviews and
penetration tests since about 2008, and I’ve collected a lot of knowledge on
the pitfalls and mistakes real-world developers encounter when writing iOS
applications. This book boils down that knowledge to appeal both to iOS
developers looking to learn the practice of secure development and to
security specialists wanting to learn how to spot problems in iOS security.

How This Book Is Structured
In Part I: iOS Fundamentals, you’ll dig in to the background of iOS, its
security history, and its basic application structure.

• Chapter 1: The iOS Security Model briefly examines the iOS security
model to give you an idea of the platform’s fundamental security protec-
tions and what they can and cannot provide.

• Chapter 2: Objective-C for the Lazy explains how Objective-C differs
from other programming languages and gives a quick overview of its ter-
minology and design patterns. For seasoned Objective-C programmers,

xxiv Introduction

this may not be new information, but it should be valuable to beginners
and others dabbling in iOS for the first time.

• Chapter 3: iOS Application Anatomy outlines how iOS applications are
structured and bundled and investigates the local storage mechanisms
that can leak sensitive information.

In Part II: Security Testing, you’ll see how to set up your security testing
environment, for use either in development or in penetration testing. I’ll
also share some tips for setting up your Xcode projects to get the most out of
the available security mechanisms.

• Chapter 4: Building Your Test Platform gives you all the information
that you need to get started with tools and configurations to help you
audit and test iOS applications. This includes information on using the
Simulator, configuring proxies, bypassing TLS validation, and analyzing
application behavior.

• Chapter 5: Debugging with lldb and Friends goes deeper into monitor-
ing application behavior and bending it to your will using lldb and
Xcode’s built-in tools. This will help you analyze more complex prob-
lems in your code, as well as give you a test harness to do things like fault
injection.

• Chapter 6: Black-Box Testing delves into the tools and techniques
that you’ll need to successfully analyze applications that you don’t
have source code for. This includes basic reverse engineering, binary
modification, copying programs around, and debugging on the device
with a remote instance of lldb.

In Part III: Security Quirks of the Cocoa API, you’ll look at common
security pitfalls in the Cocoa Touch API.

• Chapter 7: iOS Networking discusses how networking and Transport
Layer Security work in iOS, including information on authentication,
certificate pinning, and mistakes in TLS connection handling.

• Chapter 8: Interprocess Communication covers interprocess communi-
cation mechanisms, including URL schemes and the newer Universal
Links mechanism.

• Chapter 9: iOS-Targeted Web Apps covers how web applications are
integrated with iOS native apps, including working with web views or
using JavaScript/Cocoa bridges such as Cordova.

• Chapter 10: Data Leakage discusses the myriad ways that sensitive data
can unintentionally leak onto local storage, to other applications, or
over the network.

• Chapter 11: Legacy Issues and Baggage from C gives an overview of C
flaws that persist in iOS applications: stack and heap corruption, format
string flaws, use-after-free, and some Objective-C variants of these classic
flaws.

Introduction xxv

• Chapter 12: Injection Attacks covers attacks such as SQL injection, cross-
site scripting, XML injection, and predicate injection, as they relate to
iOS applications.

Finally, Part IV: Keeping Data Safe covers issues relating to privacy and
encryption.

• Chapter 13: Encryption and Authentication looks at encryption best
practices, including how to properly use the Keychain, the Data
Protection API, and other cryptographic primitives provided by the
CommonCrypto framework.

• Chapter 14: Mobile Privacy Concerns ends the book with a discussion
of user privacy, including what collecting more data than needed can
mean for both application creators and users.

By the end of this book, you should be well equipped to grab an appli-
cation, with or without source code, and quickly pinpoint security bugs. You
should also be able to write safe and secure applications for use in the wider
world.

Conventions This Book Follows
Because Objective-C is a rather verbose language with many extremely long
class and method names, I’ve wrapped lines in source code listings to maxi-
mize clarity. This may not reflect the way you’d actually want to format your
code. In some cases, the results are unavoidably ugly—if wrapping makes
the code seem less clear, try pasting it into Xcode and allowing Xcode to
reformat it.

As I will detail in Chapter 2, I favor the traditional Objective-C infix
notation instead of dot notation. I also put curly braces on the same line as
method declarations for similar reasons: I’m old.

Objective-C class and method names will appear in monospaced font.
C functions will appear in monospaced font as well. For brevity and cleanli-
ness, the path /Users/<your username>/Library/Developer/CoreSimulator/ will
be referred to as $SIMPATH.

A Note on Swift
There’s been much interest in the relatively new Swift language, but you’ll
find I don’t cover it in this book. There are a few reasons why.

First, I have yet to actually come across a production application written
in Swift. Objective-C is still far and away the most popular language for iOS
applications, and we’ll be dealing with code written in it for many years
to come.

Second, Swift just has fewer problems. Since it’s not based on C, it’s
easier to write safer code, and it doesn’t introduce any new security flaws
(as far as anyone knows).

Third, because Swift uses the same APIs as Objective-C, the security
pitfalls in the Cocoa Touch API that you may run into will be basically the

xxvi Introduction

same in either language. The things you learn in this book will almost all
apply to both Objective-C and Swift.

Also, Swift doesn’t use infix notation and square brackets, which makes
me sad and confused.

Mobile Security Promises and Threats
When I first started working with mobile applications, I honestly questioned
the need for a separate mobile application security category. I considered
mobile applications to be the same as desktop applications when it came
to bugs: stack and heap overflows, format string bugs, use-after-free, and
other code execution issues. While these are still possible in iOS, the security
focus for mobile devices has expanded to include privacy, data theft, and
malicious interprocess communication.

As you read about the iOS security specifics I cover in this book, keep
in mind that users expect apps to avoid doing certain things that will put
their security at risk. Even if an app avoids overtly risky behaviors, there are
still several threats to consider as you fortify that app’s defenses. This section
discusses both security promises an app makes to its users and the types of
attacks that can force an app to break them.

What Mobile Apps Shouldn’t Be Able to Do
Learning from the design mistakes of earlier desktop operating systems, the
major mobile operating systems were designed with application segregation
in mind. This is different from desktop applications, where any application a
user runs more or less has access to all that user’s data, if not control of the
entire machine.

As a result of increased focus on segregation and general improve-
ments in the mobile OS arena, user expectations have expanded. In gen-
eral, mobile applications (including yours) should be unable to do a few key
things.

Cause Another Application to Misbehave
Applications shouldn’t be able to crash or meddle with other applications.
In the bad old days, not only could other applications generally read, mod-
ify, or destroy data, they could take down the entire OS with that data. As
time went on, desktop process segregation improved but primarily with
the goal of increasing stability, rather than addressing security or privacy
concerns.

Mobile operating systems improve upon this, but total process segre-
gation is not possible while fulfilling users’ interoperability needs. The
boundary between applications will always be somewhat porous. It’s up
to developers to ensure that their applications don’t misbehave and to
take all prudent measures to safeguard data and prevent interference
from malicious applications.

Introduction xxvii

Deny Service to a User
Given that iOS has historically been used primarily on phones, it’s crucial
that an application not be able to do something that would prevent the user
from making an emergency call. In many places, this is a legal requirement,
and it’s the reason for protective measures that keep attackers (and users)
from tampering with the underlying OS.

Steal a User’s Data
An application should not be able to read data from other applications
or the base OS and deliver it to a third party. It should also not be able to
access sensitive user data without the permission of the user. The OS should
keep applications from reading data directly from other application’s data
stores, but preventing theft via other channels requires developers to pay
attention to what IPC mechanisms an application sends or receives data on.

Cost the User Unexpected Money
Apps shouldn’t be able to incur charges without the user’s approval. Much
of the mobile malware that has been found in the wild has used the ability to
send SMS messages to subscribe the user to third-party services, which pass
charges through to the user’s phone provider. Purchases made within the
application should be clear to the user and require explicit approval.

Classifying Mobile Security Threats in This Book
To help understand mobile device security threats and their mitigations,
it’s also useful to keep a few attack types in mind. This keeps our analysis of
threats realistic and helps to analyze the true impact of various attacks and
their defenses.

Forensic Attacks
Forensic attackers come into possession of a device or its backups, intending
to extract its secrets. Most often, this involves examination of the physical
storage on the device. Because phone or tablet theft is relatively easy and
common compared to stealing other computing devices, much more atten-
tion is placed on forensics.

Forensic attacks can be performed by either an opportunistic attacker or
a skilled attacker targeting a specific individual. For opportunistic attackers,
extracting information can be as simple as stealing a phone without any PIN
protection; this allows them to steal images, notes, and any other data nor-
mally accessible on the phone. It can also assist an attacker in compromising
services that use two-factor authentication in conjunction with a phone-
based token or SMS.

A skilled forensic attacker could be a rogue employee, corporation,
government, law enforcement official, or perhaps really motivated extor-
tionist. This kind of attacker knows the techniques to perform a temporary
jailbreak, crack simple PINs, and examine data throughout the device’s file-
system, including system-level and application-level data. This can provide

xxviii Introduction

an attacker with not just data presented through the UI but the underlying
cache information, which can include screenshots, keystrokes, sensitive
information cached in web requests, and so forth.

I’ll cover much of the data of interest to forensic attackers in Chapter 10,
as well as some further protective measures in Chapter 13.

Code Execution Attacks
Remote code execution attacks involve compromising the device or its data
by execution of code on the device, without having physical possession of
the device. This can happen via many different channels: the network, QR
codes or NFC, parsing of maliciously crafted files, or even hostile hardware
peripherals. Note that after gaining code execution on a device, many of
the forensic attacks used to expose user secrets are now possible. There are
a few basic subtypes of code execution attacks that frequently result from
lower-level programming flaws, which I’ll discuss in Chapter 11.

Web-Based Attacks
Web-based remote code execution attacks primarily use maliciously crafted
HTML and JavaScript to mislead the user or steal data. A remote attacker
either operates a malicious website, has taken over a legitimate website, or
simply posts maliciously crafted content to a public forum.

These attacks can be used to steal data from local data stores such as
HTML5 database storage or localStorage, alter or steal data stored in SQLite
databases, read session cookies, or plant a fake login form to steal a user’s
credentials. I’ll talk more about web application–related issues in Chapter 9
and Chapter 12.

Network-Based Attacks
Network-based code execution attacks attempt to gain control over an
application or the entire system by injecting executable code of some type
over the network. This can be either modification of network traffic com-
ing into the device or exploitation of a system service or the kernel with a
code execution exploit. If the exploit targets a process with a high degree
of privilege, the attacker can gain access not only to the data of a specific
application but to data all over the device’s storage. They can also monitor
the device’s activity and plant backdoors that will allow later access. I’ll talk
specifically about network-related APIs in Chapter 7.

Attacks That Rely on Physical Proximity
Physical code execution attacks tend to be exploits that target devices using
communications such as NFC or the USB interface. These types of attacks
have been used for jailbreaking in the past but can also be used to compro-
mise the device using brief physical interaction. Many of these attacks are
on the OS itself, but I’ll discuss some issues relating to physical proximity in
Chapter 14.

Introduction xxix

Some Notes for iOS Security Testers
It’s my strong belief that penetration tests should be performed with source
code if at all possible. While this is not representative of the position of
most external attackers, it does maximize the ability to find important bugs
within a limited time frame. Real-world attackers have as much time as they
care to spend on analyzing your application, and Objective-C lends well to
reverse engineering. They’ll figure it out, given the time. However, most
penetration tests are limited by time and money, so simulating a real-world
attacker should not usually be the goal.

I cover both white-box (that is, source-assisted) and black-box method-
ologies in this book, but the focus will be on source-assisted penetration tests
because this finds more bugs faster and helps with learning the standard
Cocoa library. Many techniques I describe in this book lend well to either
approach.

All that said, iOS developers come from many different disciplines,
and each person’s skill set affects the types of security issues that slip into
an app unnoticed. Whether you’re testing someone else’s application or
trying to poke holes in your own, keep in mind a few different development
backgrounds as you test.

Some iOS developers come from a C or C++ background, and since we
all tend to use what we know, you’ll find their codebases often use C/C++
APIs rather than Cocoa equivalents. If you know an application under test
was created by former C/C++ programmers, you may find Chapter 11 to
be useful reading because it discusses issues commonly found in straight
C/C++ code.

For some new programmers, Objective-C is actually their first program-
ming language. They often haven’t learned that many vanilla C APIs, so
ideally, you’ll find fewer of those issues. There’s also the rare wizened
NeXTStep programmer who’s made the move to OS X or iOS, with a
library of collected wisdom regarding NeXTStep/Cocoa APIs but less
mobile experience. If either sounds like you or your client, you’ll find
the chapters in Part III most helpful.

Programmers with Java backgrounds might try to force Java design
patterns onto an application, endlessly abstracting functionality. Web
developers who have been drafted into writing a mobile application, on
the other hand, may try to wrap as much code as possible into a web app,
writing minimal applications that rely on WebKit to view application content.
Check out Chapter 9 for some WebKit-related pitfalls.

Developers with the last few skill sets I mentioned are less likely to use
low-level APIs, which can prevent classic C flaws. They are, however, unlikely
to spot mistakes when using those low-level APIs, so you’ll want to pay close
attention if they use them.

xxx Introduction

Of course, none of these backgrounds is necessarily better suited to
secure development than the others—both high-level and low-level APIs can
be abused. But when you know how existing skills can affect the writing of
iOS applications, you’re a step closer to finding and solving security issues.

My own background is that of a penetration tester, which I consider akin
to being an art critic: I can write code, but the vast majority of my time is
spent looking at other people’s code and telling them what’s wrong with it.
And like in the art world, the majority of that code is rather crap. Unlike the
art world, however, code problems can often be fixed with a patch. My hope
is that at the end of this book, you’ll be able to spot bad iOS code and know
how to start plugging the holes.

Introduction xxxi

PART I
IOS FUNDAMENTALS

1
THE IOS SECURITY MODEL

Let’s give credit where credit is due: Apple has been
pretty successful in keeping malicious software out of
the App Store (as far as I know). But the application
review process can be a frustrating black box for devel-
opers. The process used by Apple’s reviewers is not
publicly documented, and sometimes it’s simply not
clear what functionality is and isn’t permitted. Apple
gives some decent guidelines,1 but apps have been
rejected based on criteria that apply to accepted appli-
cations as well.

Of course, what qualifies as malicious is defined by Apple, not by users.
Apple uses the App Store as a way to control what functionality is available
on the iOS platform, meaning the only way to obtain certain functionality is
to jailbreak the device or subvert the App Store review process. An example
of this is the Handy Light application, which masqueraded as a flashlight
application but contained a hidden mode to enable device tethering.2

1. https://developer.apple.com/appstore/resources/approval/guidelines.html

2. http://www.macworld.com/article/1152835/iphone_flashlight_tethering.html

https://developer.apple.com/appstore/resources/approval/guidelines.html
http://www.macworld.com/article/1152835/iphone_flashlight_tethering.html

The app review process on its own will never catch all sophisticated (or
trivial) malicious applications, so other mechanisms are needed to effectively
keep bad applications from affecting the wider OS environment. In this
chapter, you’ll learn about the architecture of iOS’s security mechanisms; in
later chapters, you’ll dig in to how to take advantage of these mechanisms
properly in your own programs.

Let’s take a quick look at the fundamental security components iOS
implements to prevent exploits and protect data. I’ll dive deeper into the
actual mechanics of most of these in later sections, but I’ll start by giving a
broad overview of the impetus behind them and their utility.

Secure Boot
When you power on an iOS device, it reads its initial instructions from the
read-only Boot ROM, which bootstraps the system. The Boot ROM, which
also contains the public key of Apple’s certificate authority, then verifies that
the low-level bootloader (LLB) has been signed by Apple and launches it.
The LLB performs a few basic tasks and then verifies the second-stage boot-
loader, iBoot. When iBoot launches, the device can either go into recovery
mode or boot the kernel. After iBoot verifies the kernel is also signed by
Apple, the boot process begins in earnest: drivers are loaded, devices are
probed, and system daemons start.

The purpose of this chain of trust is to ensure that all components of the
system are written, signed, and distributed by Apple—not by third parties,
which could include malicious attackers and authors of software intended to
run on jailbroken devices. The chain is also used to bootstrap the signature
checking of individual applications; all applications must be directly or
indirectly signed by Apple.

Attacking this chain of trust is how jailbreaking works. Jailbreak authors
need to find a bug somewhere in this chain to disable the verification of
the components further down the chain. Exploits of the Boot ROM are the
most desirable because this is the one component Apple can’t change in a
software update.

Limiting Access with the App Sandbox
Apple’s sandbox, historically referred to as Seatbelt, is a mandatory access
control (MAC) mechanism based on FreeBSD’s TrustedBSD framework, pri-
marily driven by Robert Watson. It uses a Lisp-like configuration language to
describe what resources a program can or cannot access, including files, OS
services, network and memory resources, and so on.

MAC is different from traditional access control mechanisms such as
discretionary access control (DAC) in that it disallows subjects, such as user
processes, from manipulating the access controls on objects (files, sockets,

4 Chapter 1

and so on). DAC, in its simplest, most common form, is controlled on a
UNIX system with user, group, and other permissions, all of which can be
granted read, write, or execute permissions.3 In a DAC system, users can
change permissions if they have ownership of an object. For example, if
you own a file, you can set it to be world-readable or world-writable, which
obviously subverts access controls.

While MAC is a broad term, in sandbox-land it means that applications
are shunted into a virtual container that consists of detailed rules specify-
ing which system resources a subject is allowed to access, such as network
resources, file read and writes, the ability to fork processes, and so on.4 On
OS X you can control some of how your application is sandboxed, but on
iOS all third-party applications are run with a single restrictive policy.

In terms of file access, processes are generally confined to their own
application bundle directory; they can read and write only the files stored
there. The standard policy is slightly porous, however. For example, in some
versions of iOS, photos in /private/var/mobile/Media/Photos/ can be directly
accessed by third-party applications, despite being outside the application’s
bundle directory, which allows programs to surreptitiously access photos
without asking for user permission. The only protection against applications
abusing this type of privilege is Apple’s application review process.

This approach differs from that used by Android, which implements a
more traditional DAC model, where applications are given their own user
ID and a directory owned by that ID. Permissions are managed strictly via
traditional UNIX file permissions. While both approaches are workable,
MAC generally provides more flexibility. For instance, in addition to app
directory segregation, MAC policies can be used to restrict network access or
limit what actions system daemons can take.

Data Protection and Full-Disk Encryption
iOS led the way in offering mobile devices with filesystem encryption, for
which some credit is due. iOS offers full-disk encryption and additionally
provides developers with the Data Protection API to further protect their
files. These two related mechanisms make it possible to wipe remote devices
and protect user data in the event of device theft or compromise.

Historically, full-disk encryption is made to solve one problem: data at
rest being stolen by an attacker. In the laptop or desktop world, this would
involve either removing the hard drive from a machine and mounting it
on a separate machine or booting into an OS that could read the files off
the drive. Filesystem encryption does not protect against data being stolen
off of a running device. If an application is able to read a file from the disk,

3. This description is, of course, slightly simplified; there are also sticky bits, setuid bits, and so
forth. Since iOS doesn’t use DAC as its primary access control mechanism, though, I won’t get
into those topics in this book.

4. You can find a good summary of the default iOS sandbox policies at https://media.blackhat.
com/bh-us-11/DaiZovi/BH_US_11_DaiZovi_iOS_Security_WP.pdf

The iOS Security Model 5

https://media.blackhat.com/bh-us-11/DaiZovi/BH_US_11_DaiZovi_iOS_Security_WP.pdf
https://media.blackhat.com/bh-us-11/DaiZovi/BH_US_11_DaiZovi_iOS_Security_WP.pdf

filesystem encryption provides no benefit because the kernel transparently
decrypts files for any process that tries to read them. In other words, file-
system encryption works at a lower level than the calls typically used to read
files. An attacker who can authenticate to the system can read any available
files unimpeded.

iOS devices are generally designed to be running at all times, and their
internal storage is not easily removable. If an attacker wanted to read sen-
sitive data from a device without authenticating, they would have to com-
pletely disassemble the device and hook up the flash storage to a custom
interface to read storage directly. There are several far easier methods
for obtaining data from the device—including code execution exploits,
jailbreaking, and so on—so no one would ever actually go to all that trouble.

But that doesn’t mean iOS’s full filesystem encryption is completely
useless. It’s necessary to correctly implement two other critical security fea-
tures: secure file deletion and remote device wipe. Traditional methods of
securely erasing files don’t apply to iOS devices, which use solid-state drives
(SSDs). The wear-reduction mechanisms used by this hardware remove all
guarantees that overwriting a file actually overwrites the previous physical
location of the file. The solution to this problem is to ensure that files are
encrypted with safely stored keys so that in the event that data destruction
is requested, keys can be discarded. The encryption key hierarchy used in
iOS is layered. Entire classes of data or even the whole filesystem can be
destroyed by throwing away a single encryption key.

The Encryption Key Hierarchy
Filesystem encryption keys for stored data on iOS are hierarchical, with keys
encrypting other keys, so that Apple has granular control if and when data is
available. The basic hierarchy is shown in Figure 1-1.

Device Key User Passcode

Filesystem Key Class Key

File Key

 

 



Figure 1-1: The simplified iOS encryption key hierarchy

6 Chapter 1

The File Key º is an individual key generated per file and stored in the
file’s metadata. The Class Key ¹ is a dedicated key for a particular Data
Protection class so that files classified with different protection levels use
separate cryptographic keys. In older versions of iOS, the default protec-
tion class was NSFileProtectionNone; from version 5 onward, the default pro-
tection class is NSFileProtectionCompleteUntilFirstUserAuthentication, which is
further described in Chapter 13. The Filesystem Key ¸ is a global encryption
key used to encrypt the file’s security-related metadata after the metadata is
encrypted by the Class Key.

The Device Key ¶, also known as the UID key, is unique for each device
and accessible only by the hardware AES engine, not by the OS itself. This
is the master key of the system, as it were, which encrypts the Filesystem Key
and the Class Keys. The User Passcode ·, if enabled, is combined with the
Device Key when encrypting Class Keys.

When a passcode is set, this key hierarchy also allows developers to spec-
ify how they want their locally stored data to be protected, including whether
it can be accessed while the device is locked, whether data gets backed up to
other devices, and so on. You’ll learn more about how to use encryption and
file protection features to protect files from device thieves in Chapter 13,
where I cover the Data Protection API in greater depth.

The Keychain API
For small pieces of secret information, iOS offers a dedicated Keychain API.
This allows developers to store information such as passwords, encryption
keys, and sensitive user data in a secure location not accessible to other
applications. Calls to the Keychain API are mediated through the securityd

daemon, which extracts the data from a SQLite data store. The programmer
can specify under what circumstances keys should be readable by applica-
tions, similar to the Data Protection API.

The Data Protection API
The Data Protection API leverages filesystem encryption, the Keychain, and
the user’s passcode to provide an additional layer of protection to files at the
developer’s discretion. This limits the circumstances under which processes
on the system can read such files. This API is most commonly used to make
data inaccessible when a device is locked.

The degree of data protection in effect depends heavily on the version
of iOS the device is running because the default Data Protection classes have
changed over time. In newly created iOS application projects, Data Protec-
tion is enabled by default for all application data until the user unlocks the
device for the first time after boot. Data Protection is enabled in project
settings, as shown in Figure 1-2.

The iOS Security Model 7

Figure 1-2: Adding a data protection entitlement to a project

Native Code Exploit Mitigations: ASLR, XN, and Friends
iOS implements two standard mechanisms to help prevent code execution
attacks: address space layout randomization (ASLR) and the XN bit (which stands
for eXecute Never). ASLR randomizes the memory location of the program
executable, program data, heap, and stack on every execution of the pro-
gram; because shared libraries need to stay put to be shared by multiple
processes, the addresses of shared libraries are randomized every time the
OS boots instead of every program invocation. This makes the specific
memory addresses of functions and libraries hard to predict, preventing
attacks such as a return-to-libc attack, which relies on knowing the memory
addresses of basic libc functions. I’ll talk more about these types of attacks
and how they work in Chapter 11.

The XN bit, generally known on non-ARM platforms as the NX (No-
eXecute) bit, allows the OS to mark segments of memory as nonexecutable,
which is enforced by the CPU. In iOS, this bit is applied to a program’s stack
and heap by default. This means in the event that an attacker is able to
insert malicious code onto the stack or heap, they won’t be able to redirect
the program to execute their attack code. Figure 1-3 shows the segments of
process memory and their XN status.

A program can have memory that is both writable and executable only
if it’s signed with Apple’s own code-signing entitlement; this is primarily
used for the JavaScript just-in-time (JIT) compiler included as part of Mobile
Safari. The regular WebViews that you can use in your own programs don’t
have access to the same functionality; this is to help prevent code execution

8 Chapter 1

attacks. An unfortunate effect of Apple’s policy is that it effectively bans
third-party JITs, notably preventing Chrome from performing as well as
Safari on iOS. Chrome has to use the built-in WebViews.

data

...

stack

heap

text

...

XN

XN

XN

executable but read-only

Figure 1-3: Basic memory segments of a process

Jailbreak Detection
Fundamentally, jailbreaking is any procedure that disables iOS’s code-
signing mechanisms, allowing a device to run applications other than those
approved directly by Apple. Jailbreaking allows you to take advantage of
some useful development and testing tools, as well as utilities that would
never pass App Store muster.5 The ability to jailbreak is critical to testing
applications in a black-box fashion; I’ll dig in to black-box testing further in
Chapter 6.

Contrary to popular belief, jailbreaking doesn’t necessarily disable the
iOS sandbox. It just allows you to install applications outside of the sandbox.
Applications installed in the home directory of the mobile user (that is, ones
installed via the App Store) are still subject to sandbox restrictions. Third-
party iOS applications that need higher levels of privilege on jailbroken
devices are installed in the /Applications folder, alongside the stock Apple
applications.

The history of jailbreak detection is long and comical. This procedure is
intended to detect whether the device is at heightened risk for compromise
because of the less trustworthy nature of unsigned third-party programs. To
be fair, there isn’t a shortage of malware and misbehaving programs in third-
party application repositories, but in general, jailbreak detection isn’t worth
your time because it won’t stop a determined attacker.

For a brief period, Apple had an official jailbreak detection API, but this
was pulled rather quickly from subsequent releases of iOS. In the absence of
this API, developers have implemented a number of tricks to try detect jail-
breaking themselves. The most popular techniques for attempting jailbreak
detection go along these lines:

5. It seems, however, that most jailbreak users are motivated by the ability to perform the digital
equivalent of putting spinning hubcaps on your car.

The iOS Security Model 9

• Spawn a new process, such as using fork(), vfork(), popen(), and so on.
This is something explicitly prevented by the sandbox. Of course, on
jailbroken devices the sandbox is still enabled, making this strategy fairly
pointless. It will fail for any App Store application regardless of whether
the device is jailbroken.

• Read a file path outside of the sandbox. Developers commonly try to
access the binary for ssh, bash, the Cydia.app directory, the path to the
apt repository that Cydia uses, and so forth. These checks are painfully
easy to get around, and tools such as Xcon6 help end users bypass these
checks automatically.

• Ensure that the method name with your jailbreak detection logic is
something blatantly obvious, such as isJailbroken, allowing attackers
to easily spot and disable your jailbreak checks.

There are some more obscure techniques as well. For example, Apple’s
iBooks application attempts to run unsigned code distributed with the app
bundle.7 Savvy developers will also attempt to use _dyld_image_count() and
_dyld_get_image_name() to check the total number of loaded dynamic libraries
(dylibs) and their names,8 and use _dyld_get_image_header() to inspect their
locations in memory.9 Getting around these checks generally requires
patching an application’s binary directly.

As you may have noticed, I don’t think much of jailbreak detection
in general. Like binary obfuscation techniques and DRM, jailbreak detec-
tion techniques typically serve only to make you look foolish when they’re
bypassed (and believe me, I’ve seen some foolish obfuscation techniques).
Proponents often argue that performing cursory jailbreak detection slows
down pirates or attackers. But your adversary’s hobby is cracking applica-
tions, and they have weeks of time on hand in which to do so—slowing them
down by a few hours isn’t really worthwhile. The longest it has taken me to
develop a jailbreak detection bypass is about a day with an obfuscated binary
and a battery of tests—and I’m an amateur at such things.

How Effective Is App Store Review?
When developing an application or assessing the threats that an app faces,
it’s important to evaluate the risk of a rogue application ending up on end
users’ devices. Any malicious third-party applications that make it onto
devices are able to interact with applications via IPC mechanisms, as well as
steal personal information. The primary defense against these applications is
Apple’s App Store review process.

6. http://theiphonewiki.com/wiki/XCon

7. http://www.cultofmac.com/82097/ibooks-1-2-1-tries-to-run-jailbreak-code-to-detect-jailbroken-iphones/

8. http://theiphonewiki.com/wiki/Bypassing_Jailbreak_Detection

9. http://stackoverflow.com/questions/4165138/detect-udid-spoofing-on-the-iphone-at-runtime/

10 Chapter 1

http://theiphonewiki.com/wiki/XCon
http://www.cultofmac.com/82097/ibooks-1-2-1-tries-to-run-jailbreak-code-to-detect-jailbroken-iphones/
http://theiphonewiki.com/wiki/Bypassing_Jailbreak_Detection
http://stackoverflow.com/questions/4165138/detect-udid-spoofing-on-the-iphone-at-runtime/

Apple doesn’t publicly disclose the techniques it uses to test applications
for possible acceptance to the App Store, but it’s clear that both binary anal-
ysis and dynamic testing are performed. This process has kept most blatant
malware out of the App Store, at the cost of also barring any applications
that Apple doesn’t like the look of (including many types of communication
apps, pornography, anything fun, and so on).

But despite Apple’s efforts, it has been demonstrated that a moderately
sophisticated attacker can get applications through App Store review while
retaining the ability to download new code dynamically. There are a few
different ways an attacker can approach this.

Bridging from WebKit
There are several approaches to accessing native iOS APIs via JavaScript,
such as a user’s location or use of media services, using a WebKit-based
bridge. PhoneGap is a prominent example of such a package.10 While
these bridges can provide useful functionality and flexibility, using them also
means that much application logic ends up in JavaScript and isn’t necessarily
shipped with the application to begin with. For example, a developer might
implement a generic file-opening function that’s accessible via JavaScript
and avoid using it for anything evil during the review process. But later, that
developer can alter the JavaScript served to the device and attempt to read
data from areas on the device that they shouldn’t be accessing.

I’ll discuss the implementation of and some of the issues with JavaScript/
native code bridges in Chapter 9.

Dynamic Patching
Normally, applications are prevented from running any native code that
hasn’t been cryptographically signed by Apple-issued keys. If a bug or mis-
feature in Apple’s signature-checking logic is found, it can potentially allow
for the downloading and execution of native code. A notable example of
this in the wild was Charlie Miller’s exploitation of a feature that allowed
programs to allocate memory regions without NX protection (that is, mem-
ory regions that are readable, writable, and executable) and that do not
require code to be signed.11 This mechanism was put in place by Apple to
allow Safari’s JIT compiler to function,12 but a bug in the implementation
let third-party applications perform the same trick.

10. http://phonegap.com/

11. http://arstechnica.com/apple/2011/11/safari-charlie-discovers-security-flaw-in-ios-gets-booted
-from-dev-program/

12. http://reverse.put.as/wp-content/uploads/2011/06/syscan11_breaking_ios_code_signing.pdf

The iOS Security Model 11

http://phonegap.com/
http://reverse.put.as/wp-content/uploads/2011/06/syscan11_breaking_ios_code_signing.pdf
http://arstechnica.com/apple/2011/11/safari-charlie-discovers-security-flaw-in-ios-gets-booted-from-dev-program/

This meant that native code could be downloaded and executed with-
out needing to be signed at all. Miller demonstrated this by submitting an
application, called InstaStock, to the App Store which purported to be a stock
ticker checking program. At the time of app review, the app did nothing
malicious or unusual; however, after the review process was complete, Miller
was able to instruct the program to download new, unsigned code and exe-
cute that code without problem. This issue is now resolved, but it does give
you an idea of the things that can slip through the cracks of review.

Intentionally Vulnerable Code
An interesting approach to bypassing App Store review is to intentionally
make your app vulnerable to remote exploits. Jekyll13 was a proof-of-concept
application developed at Georgia Tech that intentionally introduced a
buffer overflow in the core application. Malicious code was included in the
app itself so that the code would be signed but was never called by the appli-
cation. After approval, the researchers were able to use a buffer overflow
exploit to change the control flow of the application to include malicious
code, allowing it to use private Apple frameworks to interact with Bluetooth,
SMS, and more.

Embedded Interpreters
While Apple’s policy on this practice has shifted over the years, many prod-
ucts (primarily games) use an embedded Lua interpreter to perform much
of the internal logic. Malicious behavior using an embedded interpreter has
not yet been reported in the wild, but a crafty application using a similar
interpreter could download code dynamically and execute it from memory,
though not during the review process, of course. This would add new and
malicious (or helpful, if you’re so inclined) functionality.

Closing Thoughts
Ultimately, what protections does application review provide? Well, it does
weed out less sophisticated malware. But you can assume with some cer-
tainty that malicious applications will indeed slip through from time to time.
Keep that in mind and code your applications defensively; you definitely
cannot assume other applications on the OS are benign.

13. http://www.cc.gatech.edu/~klu38/publications/security13.pdf

12 Chapter 1

http://www.cc.gatech.edu/~klu38/publications/security13.pdf

2
OBJECTIVE-C FOR THE LAZY

Objective-C has been met with both derision and
adulation during its illustrious career. Brought to
popularity by NeXTStep and inspired by the design
of Smalltalk, Objective-C is a superset of C. Its most
notable characteristics are the use of infix notation
and absurdly long class names. People tend to either
love it or hate it. People who hate it are wrong.

In this chapter, I’ll go over the basics of Objective-C, assuming that
you’re already familiar with programming in some language or another.
Know, however, that Cocoa and Objective-C are constantly changing. I can’t
cover all of their finer details adequately in a single chapter, but I do include
some hints here to help nondevelopers get their bearings when examining
Objective-C code. If you’re starting from very little programming knowledge,
you may wish to check out a book like Knaster, Malik, and Dalrymple’s Learn
Objective-C on the Mac: For OS X and iOS (Apress, 2012) before you dig in.

As much as I’d like to stick with the most modern coding patterns of
Objective-C, if you’re auditing existing code, you may come across plenty
of crusty, reused code from the early days of iOS. So just in case, I’ll go over
both historical Objective-C constructs and the newly sanctioned versions.

Key iOS Programming Terminology
There are a few terms you’ll want to be familiar with to understand where
Apple’s various APIs come from. Cocoa is the general term for the frame-
works and APIs that are used in Objective-C GUI programming. Cocoa Touch
is a superset of Cocoa, with some added mobile-related APIs such as dealing
with gestures and mobile GUI elements. Foundation classes are Objective-C
classes that make up much of what we call the Cocoa API. Core Foundation is
a lower-level C-based library upon which many Foundation classes are based,
usually prefixed with CF instead of NS.

Passing Messages
The first key to grokking Objective-C is understanding that the language is
designed around the concept of message passing, rather than calling. It’s use-
ful (for me, anyway) to think of Objective-C as a language where objects sit
around shouting at each other in a crowded room, rather than a language
where hierarchical directors give orders to their subordinates. This analogy
especially makes sense in the context of delegates, which I’ll get to shortly.

At its most basic, sending Objective-C messages looks like this:

[Object doThisThingWithValue:myValue];

That’s like saying, “Hey there, Object! Please do this thing using a value
of myValue.” When passing in multiple parameters, the nature of the first one
is conventionally indicated by the message name. Any subsequent parame-
ters must be both defined as part of the class and specifically named when
called, as in this example:

if (pantsColor == @"Black") {

[NSHouseCat sleepOnPerson:person

withRegion:[person lap]

andShedding:YES

retries:INT_MAX];

}

In this simplified simulation of catnapping under certain conditions,
sleepOnPerson specifies a place to sleep (person), and withRegion specifies the
region of the person to sleep on by sending person a message returning that
person’s lap. The andShedding parameter accepts a Boolean, and retries speci-
fies the number of times this action will be attempted—in this case, up to
the maximum value of an integer on a platform, which will vary depending
on whether you have a 64-bit cat.

If you’ve been writing Objective-C for a while, you may notice that the
formatting of this code looks different than what you’re used to. That’s
because this is an arcane method of formatting Objective-C code, known

14 Chapter 2

as “the correct way,” with vertically aligned colons between argument names
and values. This keeps the pairings between parameter names and values
visually obvious.

Dissecting an Objective-C Program
The two main parts of an Objective-C program are the interface and the
implementation, stored in .h and .m files, respectively. (These are roughly
analogous in purpose to .h and .cpp files in C++.) The former defines all of
the classes and methods, while the latter defines the actual meat and logic
of your program.

Declaring an Interface
Interfaces contain three main components: instance variables (or ivars),
class methods, and instance methods. Listing 2-1 is the classic (that is, depre-
cated) Objective-C 1.0 way to declare your interfaces.

@interface Classname : NSParentClass {

¶ NSSomeType aThing;

int anotherThing;

}

· + (type)classMethod:(vartype)myVariable;

¸ - (type)instanceMethod:(vartype)myVariable;

@end

Listing 2-1: Declaring an interface, archaic version

Inside the main @interface block at ¶, instance variables are declared
with a class (like NSSomeType) or a type (like int), followed by their name. In
Objective-C, a + denotes the declaration of a class method ·, while a - indi-
cates an instance method ¸. As with C, the return type of a method is speci-
fied in parentheses at the beginning of the definition.

Of course, the modern way of declaring interfaces in Objective-C is a
little different. Listing 2-2 shows an example.

¶ @interface Kitty : NSObject {

@private NSString *name;

@private NSURL *homepage;

@public NSString *color;

}

@property NSString *name;

@property NSURL *homepage;

· @property(readonly) NSString *color;

Objective-C for the Lazy 15

+ (type)classMethod:(vartype)myVariable;

- (type)instanceMethod:(vartype)myVariable;

Listing 2-2: Declaring an interface, modern version

This new class, called Kitty, inherits from NSObject ¶. Kitty has three
instance variables of different accessibility types, and three properties are
declared to match those instance variables. Notice that color is declared
readonly ·; that’s because a Kitty object’s color should never change. This
means when the property is synthesized, only a getter method will be cre-
ated, instead of both a getter and a setter. Kitty also has a pair of methods:
one class method and one instance method.

You may have noticed that the example interface declaration used the
@private and @public keywords when declaring instance variables. Similar
to other languages, these keywords define whether ivars will be accessible
from within only the class that declared it (@private), accessible from within
the declaring class and any subclasses (@protected), or accessible by any class
(@public). The default behavior of ivars is @protected.

NOTE Newcomers to the language often want to know whether there is an equivalent to
private methods. Strictly speaking, there isn’t a concept of private methods in Objective-
C. However, you can have the functional equivalent by declaring your methods only
in the @implementation block instead of declaring them in both the @interface and the
@implementation.

Inside an Implementation File
Just like .c or .cpp files, Objective-C implementation files contain the meat
of an Objective-C application. By convention, Objective-C files use .m files,
while Objective-C++ files (which mix C++ and Objective-C code) are stored
in .mm files. Listing 2-3 breaks down the implementation file for the Kitty

interface in Listing 2-2.

@implementation Kitty

¶ @synthesize name;

@synthesize color;

@synthesize homepage;

+ (type)classMethod:(vartype)myVariable {

// method logic

}

- (type)instanceMethod:(vartype)myVariable {

// method logic

}

@end

16 Chapter 2

Kitty *myKitty = [[Kitty alloc] init];

· [myKitty setName:@"Ken"];

¸ myKitty.homepage = [[NSURL alloc] initWithString:@"http://me.ow"];

Listing 2-3: A sample implementation

The @synthesize statements at ¶ create the setter and getter methods for
the properties. Later, these getter and setter methods can be used either
with Objective-C’s traditional infix notation ·, where methods of the format
propertyName and setPropertyName (like name and setName, respectively) get and
set values, or with dot notation ¸, where properties like homepage are set or
read using the .property format, as they might be in other languages.

NOTE Be careful with dot notation, or just don’t use it. Dot notation makes it hard to know
whether you’re dealing with an object or a C struct, and you can actually call any
method with it—not only getters and setters. Dot notation is also just visually inconsis-
tent. Long story short, in this book I’ll avoid dot notation in the name of consistency
and ideological purity. But despite my best efforts, you’ll likely encounter it in the real
world anyway.

Technically, you don’t need to synthesize properties that are declared
in the interface file with @property, like name, color, and homepage in Listing 2-3;
the compiler in recent versions of Xcode synthesizes these properties on its
own. But you may want to manually declare them anyway for clarity or when
you want to change the name of the instance variable to differentiate it from
the property name. Here’s how manually synthesizing a property works:

@synthesize name = thisCatName;

Here, the property name is backed by the instance variable thisCatName

because it was manually synthesized. However, the default behavior with
automatic property synthesis is analogous to this:

@synthesize name = _name;

This default behavior prevents developers from accidentally meddling
with the instance variables directly, instead of using setters and getters,
which can cause confusion. For example, if you set an ivar directly, you’ll
be bypassing any logic in your setter/getter methods. Automatic synthesis is
probably the best way to do things, but you’ll be seeing manual synthesis in
code for a long time to come, so it’s best to be aware of it.

Objective-C for the Lazy 17

Specifying Callbacks with Blocks
One thing that’s becoming increasingly popular in Objective-C code is the
use of blocks, which are often used in Cocoa as a way to specify a callback.
For example, here’s how you’d use the dataTaskWithRequest method of the
NSURLSessionDataTask class:

NSURLSession *session = [NSURLSession sessionWithConfiguration:configuration

delegate:self

delegateQueue:nil];

NSURLSessionDataTask *task = [session dataTaskWithRequest:request

completionHandler:

¶ ^(NSData *data, NSURLResponse *response, NSError *error) {

NSLog(@"Error: %@ %@", error, [error userInfo]);

}];

The ^ at ¶ is declaring a block that will be executed once the request is
complete. Note that no name is specified for this function because it won’t
be called from anywhere other than this bit of code. A block declaration just
needs to specify the parameters that the closure will take. From there, the
rest of the block is just like a normal function. You can use blocks for tons of
other things as well, but to start with, it’s probably sufficient to have a basic
understanding of what they are: things that begin with ^ and do stuff.

How Objective-C Manages Memory
Unlike some other languages, Objective-C does not have any garbage collec-
tion. Historically, Objective-C has used a reference counting model, using the
retain and release directives to indicate when an object needs to be freed,
to avoid memory leaks. When you retain an object, you increase the reference
count—that is, the number of things that want that object to be available to
them. When a piece of code no longer needs an object, it sends it a release

method. When the reference count reaches zero, the object is deallocated,
as in this example:

¶ NSFish *fish = [[NSFish alloc] init];

NSString *fishName = [fish name];

· [fish release];

Assume that before this code runs, the reference count is 0. After ¶, the
reference count is 1. At ·, the release method is called to say that the fish

object is no longer needed (the application just needs the fish object’s name

property), and when fish is released, the reference count should be 0 again.

18 Chapter 2

The [[Classname alloc] init] can also be shortened to [Classname new],
but the new method isn’t favored by the Objective-C community because it’s
less explicit and is inconsistent with methods of object creation other than
init. For example, you can initialize NSString objects with [[NSString alloc]

initWithString:@"My string"] , but there’s no equivalent new syntax, so your
code would end up having a mix of both methods. Not everyone is averse to
new, and it’s really a matter of taste, so you’re likely to see it both ways. But in
this book, I’ll favor the traditional approach.

Regardless of which allocation syntax you prefer, the problem with a
manual retain/release is that it introduced the possibility of errors: program-
mers could accidentally release objects that had already been deallocated
(causing a crash) or forget to release objects (causing a memory leak).
Apple attempted to simplify the situation with automatic reference counting.

Automatic Reference Counting
Automatic reference counting (ARC) is the modern method of Objective-C
memory management. It removes the need for manually tracking reference
counts by automatically incrementing and decrementing the retain count
where appropriate.1 Essentially, it inserts retain and release methods for you.
ARC introduces a few new concepts, listed here:

• Weak and strong references assist in preventing cyclical references
(referred to as strong reference cycles), where a parent object and child
object both have ownership over each other and never get deallocated.

• Object ownership between Core Foundation objects and Cocoa objects
can be bridged. Bridging tells the compiler that Core Foundation
objects that are cast to Cocoa objects are to be managed by ARC, by
using the __bridge family of keywords.

• @autoreleasepool replaces the previously used NSAutoReleasePool

mechanism.

In modern Cocoa applications with ARC, the details of memory man-
agement are unlikely to come into play in a security context. Previously
exploitable conditions such as double-releases are no longer a problem,
and memory-management-related crashes are rare. It’s still worth noting
that there are other ways to cause memory management problems because
CFRetain and CFRelease still exist for Core Foundation objects and C malloc

and free can still be used. I’ll discuss potential memory management issues
using these lower-level APIs in Chapter 11.

1. http://developer.apple.com/library/mac/#releasenotes/ObjectiveC/RN-TransitioningToARC/
Introduction/Introduction.html

Objective-C for the Lazy 19

http://developer.apple.com/library/mac/#releasenotes/ObjectiveC/RN-TransitioningToARC/Introduction/Introduction.html
http://developer.apple.com/library/mac/#releasenotes/ObjectiveC/RN-TransitioningToARC/Introduction/Introduction.html

Delegates and Protocols
Remember how objects “shout at each other in a crowded room” to pass
messages? Delegation is a feature that illustrates Objective-C’s message-
passing architecture particularly well. Delegates are objects that can receive
messages sent during program execution and respond with instructions that
influence the program’s behavior.

To be a delegate, an object must implement some or all meth-
ods defined by a delegate protocol, which is an agreed-upon method of
communication between a delegator and a delegate. You can declare your
own protocols, but most commonly you’ll be using established protocols in
the core APIs.

The delegates you’ll write will typically respond to one of three funda-
mental message types: should, will, and did. Invoke these messages whenever
an event is about to happen and then let your delegates direct your program
to the correct course of action.

Should Messages
Objects pass should messages to request input from any available delegates
on whether letting an event happen is a good idea. Think of this as the final
call for objections. For example, when a shouldSaveApplicationState message
is invoked, if you’ve implemented a delegate to handle this message, your
delegate can perform some logic and say something like, “No, actually,
we shouldn’t save the application state because the user has checked a
checkbox saying not to.” These messages generally expect a Boolean as a
response.

Will Messages
A will message gives you the chance to perform some action before an event
occurs—and, sometimes, to put the brakes on before it does. This message
type is more like saying, “Hey guys! Just an FYI, but I’m going to go do this
thing, unless you need to do something else first. I’m pretty committed to
the idea, but if it’s a total deal-breaker, let me know and I can stop.” An
example would be the applicationWillTerminate message.

Did Messages
A did message indicates that something has been decided for sure and an
event is going to happen whether you like it or not. It also indicates that if
any delegates want to do some stuff as a result, they should go right ahead.
An example would be applicationDidEnterBackground. In this case, did isn’t
really an indication that the application has entered the background, but it’s
a reflection of the decision being definitively made.

20 Chapter 2

Declaring and Conforming to Protocols
To declare that your class conforms to a protocol, specify that protocol in
your @interface declaration within angle brackets. To see this in action, look
at Listing 2-4, which shows an example @interface declaration that uses the
NSCoding protocol. This protocol simply specifies that a class implements
two methods used to encode or decode data: encodeWithCoder to encode data
and initWithCoder to decode data.

¶ @interface Kitty : NSObject <NSCoding> {

@private NSString *name;

@private NSURL *homepage;

@public NSString *color;

}

@implementation Kitty

· - (id)initWithCoder:(NSCoder *)decoder {

self = [super init];

if (!self) {

return nil;

}

[self setName:[decoder decodeObjectForKey:@"name"]];

[self setHomepage:[decoder decodeObjectForKey:@"homepage"]];

[self setColor:[decoder decodeObjectForKey:@"color"]];

return self;

}

¸ - (void)encodeWithCoder:(NSCoder *)encoder {

[encoder encodeObject:[self name] forKey:@"name"];

[encoder encodeObject:[self author] forKey:@"homepage"];

[encoder encodeObject:[self pageCount] forKey:@"color"];

}

Listing 2-4: Declaring and implementing conformance to the NSCoding protocol

The declaration at ¶ specifies that the Kitty class will be conforming
to the NSCoding protocol.2 When a class declares a protocol, however,
it must also conform to it, which is why Kitty implements the required
initWithCoder · and encodeWithCoder ¸ methods. These particular methods
are used to serialize and deserialize objects.

2. https://developer.apple.com/library/mac/documentation/Cocoa/Reference/Foundation/Protocols/
NSCoding_Protocol/Reference/Reference.html

Objective-C for the Lazy 21

https://developer.apple.com/library/mac/documentation/Cocoa/Reference/Foundation/Protocols/NSCoding_Protocol/Reference/Reference.html
https://developer.apple.com/library/mac/documentation/Cocoa/Reference/Foundation/Protocols/NSCoding_Protocol/Reference/Reference.html

If none of the built-in message protocols do what you need, then you
can also define your own protocols. Check out the declaration of the NSCod-
ing protocol in Apple’s Framework header files (Listing 2-5) to see what a
protocol definition looks like.

@protocol NSCoding

- (void)encodeWithCoder:(NSCoder *)aCoder;

- (id)initWithCoder:(NSCoder *)aDecoder;

@end

Listing 2-5: The declaration of the NSCoding protocol, from Frameworks/NSCoding.h

Notice that the NSCoding definition contains two methods that any
class conforming to this protocol must implement: encodeWithCoder and
initWithCoder. When you define a protocol, you must specify those methods
yourself.

The Dangers of Categories
Objective-C’s category mechanism allows you to implement new methods
on existing classes at runtime, without having to recompile those classes.
Categories can add or replace methods in the affected class, and they can
appear anywhere in the codebase. It’s an easy way to quickly change the
behavior of a class without having to reimplement it.

Unfortunately, using categories is also an easy way to make egregious
security mistakes. Because they can affect your classes from anywhere within
the codebase—even if they appear only in third-party code—critical func-
tionality, such as TLS endpoint validation, can be completely overridden by
a random third-party library or a careless developer. I’ve seen this happen in
important iOS products before: after carefully verifying that TLS/SSL works
correctly in their application, developers include a third-party library that
overrides that behavior, messing up their own properly designed code.

You can usually spot categories by noting @implementation directives
that purport to implement classes already present in Cocoa Touch. If
a developer was actually creating a category there, then the name of the
category would follow the @implementation directive in parentheses (see List-
ing 2-6).

@implementation NSURL (CategoryName)

- (BOOL) isPurple; {

if ([self isColor:@"purple"])

return YES;

22 Chapter 2

else

return NO;

}

@end

Listing 2-6: Implementing a category method

You can also use categories to override existing class methods, which is a
potentially useful but particularly dangerous approach. This can cause secu-
rity mechanisms to be disabled (such as the aforementioned TLS validation)
and can also result in unpredictable behavior. Quoth Apple:

If the name of a method declared in a category is the same as a
method in the original class, or a method in another category on
the same class (or even a superclass), the behavior is undefined as
to which method implementation is used at runtime.

In other words, multiple categories can define or overwrite the same
method, but only one will “win” and be called. Note that some Framework
methods may themselves be implemented via a category—if you attempt to
override them, your category might be called, but it might not.

A category may also accidentally override the functionality of subclasses,
even when you only meant for it to add a new method. For example, if you
were to define an isPurple method on NSObject, all subclasses of NSObject
(which is to say, all Cocoa objects) would inherit this method. Any other
class that defined a method with the same name might or might not have
its method implementation clobbered. So, yes, categories are handy, but
use them sparingly; they can cause serious confusion as well as security side
effects.

Method Swizzling
Method swizzling is a mechanism by which you can replace the implemen-
tation of a class or instance method that you don’t own (that is, a method
provided by the Cocoa API itself). Method swizzling can be functionally
similar to categories or subclassing, but it gives you some extra power and
flexibility by actually swapping the implementation of a method with a totally
new implementation, rather than extending it. Developers typically use
this technique to augment functionality of a method that’s used by many
different subclasses so they don’t have to duplicate code.

The code in Listing 2-7 uses method swizzling to add a logging state-
ment to any call of setHidden. This will affect any subclass of UIView, including
UITextView, UITextField, and so forth.

Objective-C for the Lazy 23

#import <objc/runtime.h>

@implementation UIView(Loghiding)

¶ - (BOOL)swizzled_setHidden {

NSLog(@"We're calling setHidden now!");

· BOOL result = [self swizzled_setHidden];

return result;

}

¸ + (void)load {

Method original_setHidden;

Method swizzled_setHidden;

original_setHidden = class_getInstanceMethod(self, @selector(setHidden));

swizzled_setHidden = class_getInstanceMethod(self, @selector(swizzled_
setHidden));

¹ method_exchangeImplementations(original_setHidden, swizzled_setHidden);

}

@end

Listing 2-7: Exchanging the implementation of an existing method and a replacement
method

At ¶, a wrapper method is defined that simply spits out an SLog that the
setHidden method is being called. But at ·, the swizzle_SetHidden method
appears to be calling itself. That’s because it’s considered a best practice
to call the original method after performing any added functionality, to
prevent unpredictable behavior like failing to return the type of value the
caller would expect. When you call swizzled_setHidden from within itself,
it actually calls the original method because the original method and the
replacement method have already been swapped.

The actual swapping is done in the load class method ¸, which is called
by the Objective-C runtime when loading the class for the first time. After
the references to the original and swizzled methods are obtained, the
method_exchangeImplementations method is called at ¹, which, as the name
implies, swaps the original implementation for the swizzled one.

There are a few different strategies for implementing method swizzling,
but most of them carry some risk since you’re mucking around with core
functionality.

24 Chapter 2

If you or a loved one want to implement method swizzling, you may want
to consider using a fairly well-tested wrapper package, such as JRSwizzle.3

Apple may reject applications that appear to use method swizzling in a
dangerous way.

Closing Thoughts
Overall, Objective-C and the Cocoa API are nicely high-level and prevent
a number of classic security issues in C. While there are still several ways
to mess up memory management and object manipulation, most of these
methods result in a denial of service at worst in modern code. If you’re a
developer, rely on Cocoa as much as possible, rather than patching in C or
C++ code.

Objective-C does, however, contain some mechanisms, such as cate-
gories or swizzling, that can cause unexpected behavior, and these mech-
anisms can affect your codebase widely. Be sure to investigate these tech-
niques when you see them during an app assessment because they can
potentially cause some serious security misbehavior.

3. https://github.com/rentzsch/jrswizzle/

Objective-C for the Lazy 25

https://github.com/rentzsch/jrswizzle/

3
IOS APPLICATION ANATOMY

To understand some of the problems iOS applications
face, it’s useful to get an idea of how different types
of data are stored and manipulated within an appli-
cation’s private directory, where all of its configura-
tion, assets, binaries, and documents are stored. This
is where you can discover all manner of information
leakage, as well as dig in to the guts of the program
that you’re examining.

The quickest way find out what data your application stores locally
on an iOS device is to check out ~Library/Developer/CoreSimulator/Devices.
Starting with Xcode 6, each combination of device type and OS ver-
sion you’ve ever deployed into the Simulator application is assigned a
UUID. Your particular application’s data will be stored in two places
under this directory. Your application binary and assets, including
.nib user interface files and graphic files included with the application,
are in <device ID>/data/Containers/Bundle/Application/<app bundle id>.
The more dynamic data that your application stores is in ~<device ID>/
data/Containers/Data/Application/<app bundle id>. Systemwide data such
as global configurations will be stored in the remainder of the <device ID>
directory.

Exploring this directory structure, which is sketched out in simplified
form in Figure 3-1, also reveals which types of data are handled by OS ser-
vices rather than your application.

<app bundle ID>

AppName.app

en.lproj

Documents

Library

Inbox

Application support

Cookies

Preferences

Saved application state

Caches

Snapshots

tmp

Figure 3-1: Layout of an application directory

If you’re on a jailbroken device, you can use SSH to connect to the
device and explore the directory structure; I’ll talk about jailbreaking and
connecting to test devices in Chapter 6. Whether or not your device is
jailbroken, you can use a tool such as iExplorer1 to examine the directory
structure of your installed applications, as shown in Figure 3-2.

In the rest of this chapter, I’ll cover some of the common directories
and data stores used by iOS applications, as well as how to interact with them
programmatically and what data can leak from them.

1. http://www.macroplant.com/iexplorer/

28 Chapter 3

http://www.macroplant.com/iexplorer/

Figure 3-2: Examining an application bundle with iExplorer

Dealing with plist Files
Before you start examining the directory structure, you need to know
how to read some of the stuff you’ll find there. iOS stores app configura-
tion data inside property list (plist) files, which hold this information in Core
Foundation data types such as CFArray, CFString, and so forth. From a security
standpoint, you want to examine plists for things that shouldn’t be stored
in plaintext, such as credentials, and then potentially manipulate them to
change the application’s behavior. For instance, you could enable a paid
feature that’s disabled.

There are two types of plist formats: binary and XML. As you can see in
the following example, the XML format is easily readable by humans.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/

PropertyList-1.0.dtd">

<plist version="1.0">

<dict>

<plist version="1.0">

<dict>

<key>CFBundleDevelopmentRegion</key>

<string>en</string>

<key>CFBundleExecutable</key>

<string>Test</string>

<key>CFBundleIdentifier</key>

<string>com.dthiel.Test</string>

<key>CFBundleInfoDictionaryVersion</key>

iOS Application Anatomy 29

<string>6.0</string>

<key>CFBundleName</key>

<string>Test</string>

<key>CFBundlePackageType</key>

<string>APPL</string>

<key>CFBundleShortVersionString</key>

<string>1.0</string>

<key>CFBundleSignature</key>

<string>????</string>

<key>CFBundleSupportedPlatforms</key>

<array>

<string>iPhoneSimulator</string>

</array>

--snip--

This is simply a dictionary containing hierarchical keys and values,
which provides information about the app—the platforms it can run on,
the code signature, and so forth (the signature is not present here because
the app is deployed in the Simulator application).

But when examining files from the command line or working with plists
programmatically, you’ll frequently encounter plists in binary format, which
is not particularly human readable (or writable). You can convert these plists
to XML using the plutil(1) command.

$ plutil -convert xml1 Info.plist -o -

$ plutil -convert xml1 Info.plist -o Info-xml.plist

$ plutil -convert binary1 Info-xml.plist -o Info-bin.plist

The first command converts a binary plist to XML and outputs it to
stdout, where you can pipe it to less(1) or similar commands. You can also
output directly to a file with -o filename, as in the second command. In the
third command, the binary1 conversion type turns an XML-formatted plist to
binary; but since the formats are interchangeable, you shouldn’t really need
to do this.

To make reading and editing plists more seamless, you can also config-
ure your text editor to automatically convert plist files so that if you need to
read or write to one, you can do so smoothly from a familiar environment.
For example, if you happen to use Vim, you might add a configuration like
this to your .vimrc file:

" Some quick bindings to edit binary plists

command -bar PlistXML :set binary | :1,$!plutil -convert xml1 /dev/stdin -o -

command -bar Plistbin :1,$!plutil -convert binary1 /dev/stdin -o -

fun ReadPlist()

if getline("'[") =~ "^bplist"

:PlistXML

30 Chapter 3

set filetype=xml

endif

endfunction

augroup misc

au BufWinEnter *.plist, call ReadPlist()

augroup end

This configuration will use the :PlistXML command to automatically
convert any binary plist that you edit to XML format, allowing you to make
changes in a human-readable format. Before actually writing those changes
to the file, the configuration will convert the file to binary again using the
:Plistbin command. Note that the file will still be successfully consumed by
applications regardless of whether it is in binary or XML format.

You can view plists of either format within Xcode, as in Figure 3-3. The
advantage of using Xcode is that you’ll have some additional help and drop-
down menus that show you what potential values you might be able to use
for the various keys. It’s good to know how to work with plists from the
command line, though, because this lets you directly interact with them
via SSH sessions to jailbroken devices.

Figure 3-3: Viewing a plist within Xcode

See the man pages plist(5) and plutil(1) for more information about
viewing and editing plists. If you’re working on a jailbroken device, you
can use the plutil command included with Erica Sadun’s Erica Utilities2

(available in Cydia) to work with plists locally.

2. Erica Utilities has a number of other useful tools for working with jailbroken devices; you can
check out the list at http://ericasadun.com/ftp/EricaUtilities/ .

iOS Application Anatomy 31

http://ericasadun.com/ftp/EricaUtilities/

Device Directories
Starting with iOS 8, Simulator platforms such as iPhone, iPad, and their
variations are stored in directories named with unique identifiers. These
identifiers correspond with the type of device you choose when launching
the Simulator from Xcode, in combination with the requested OS version.
Each of these directories has a plist file that describes the device. Here’s an
example:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/

PropertyList-1.0.dtd">

<plist version="1.0">

<dict>

<key>UDID</key>

<string>DF15DA82-1B06-422F-860D-84DCB6165D3C</string>

<key>deviceType</key>

<string>com.apple.CoreSimulator.SimDeviceType.iPad-2</string>

<key>name</key>

<string>iPad 2</string>

<key>runtime</key>

<string>com.apple.CoreSimulator.SimRuntime.iOS-8-0</string>

<key>state</key>

<integer>3</integer>

</dict>

</plist>

In this plist file, it’s not immediately obvious which directory is for which
device. To figure that out, either you can look at the .default_created.plist
file in the Devices directory, or you can just grep all of the device.plist files, as
shown in Listing 3-1.

$ cd /Users/me/Library/Developer/CoreSimulator/Devices && ls

26E45178-F483-4CDD-A619-9C0780293DD4

78CAAF2B-4C54-4519-A888-0DB84A883723

A2CD467D-E110-4E38-A4D9-5C082618604A

AD45A031-2412-4E83-9613-8944F8BFCE42

676931A8-FDA5-4BDC-85CC-FB9E1B5368B6

989328FA-57FA-430C-A71E-BE0ACF278786

AA9B1492-ADFE-4375-98F1-7DB53FF1EC44

DF15DA82-1B06-422F-860D-84DCB6165D3C

$ for dir in `ls|grep -v default`

do

echo $dir

grep -C1 name $dir/device.plist |tail -1|sed -e 's/<\/*string>//g'

done

32 Chapter 3

26E45178-F483-4CDD-A619-9C0780293DD4

iPhone 5s

676931A8-FDA5-4BDC-85CC-FB9E1B5368B6

iPhone 5

78CAAF2B-4C54-4519-A888-0DB84A883723

iPad Air

989328FA-57FA-430C-A71E-BE0ACF278786

iPhone 4s

A2CD467D-E110-4E38-A4D9-5C082618604A

iPad Retina

AA9B1492-ADFE-4375-98F1-7DB53FF1EC44

Resizable iPad

AD45A031-2412-4E83-9613-8944F8BFCE42

Resizable iPhone

DF15DA82-1B06-422F-860D-84DCB6165D3C

iPad 2

Listing 3-1: Grepping to determine which identifier maps to which model of iOS device

After entering the appropriate directory for the device you’ve been
testing your application on, you’ll see a data directory that contains all of the
Simulator files, including those specific to your application. Your application
data is split into three main directories under data/Containers: Bundle, Data,
and Shared.

The Bundle Directory
The Bundle directory contains an Applications directory, which in turn con-
tains a directory for each of the applications stored on the device, repre-
sented by that application’s bundle ID. In each application’s directory,
the .app folder is where the application’s core binary is stored, along with
image assets, localization information, and the Info.plist file that contains the
core configuration information for your application. Info.plist includes the
bundle identifier and main executable, along with information about your
application’s UI and which device capabilities an application requires to be
able to run.

On the filesystem, these plists are stored in either XML or binary
format, with the latter being the default. You can retrieve the informa-
tion in Info.plist programmatically by referencing dictionary attributes of
[NSBundle mainBundle];3 this is commonly used for loading styling or localiza-
tion information.

3. https://developer.apple.com/library/Mac/documentation/Cocoa/Reference/Foundation/Classes/
NSBundle_Class/Reference/Reference.html

iOS Application Anatomy 33

https://developer.apple.com/library/Mac/documentation/Cocoa/Reference/Foundation/Classes/NSBundle_Class/Reference/Reference.html
https://developer.apple.com/library/Mac/documentation/Cocoa/Reference/Foundation/Classes/NSBundle_Class/Reference/Reference.html

One thing that will potentially be of interest in the Info.plist file is the
UIRequiredDeviceCapabilities entry, which looks something like this:

<key>UIRequiredDeviceCapabilities</key>

<dict>

<key>armv7</key>

<true/>

<key>location-services</key>

<true/>

<key>sms</key>

<true/>

</dict>

The UIRequiredDeviceCapabilities entry describes which system resources
an app requires. While not an enforcement mechanism, this can give you
some clues as to what type of activities the application will engage in.

The Data Directory
The primary area of interest in the Data directory is the Applications sub-
directory. The Data/Applications directory contains the rest of the data an
application uses to run: preferences, caches, cookies, and so on. This is also
the primary location you’ll want to inspect for most types of data leakage.
Now, let’s go over the various subdirectories and the types of data that they
may end up holding.4

The Documents and Inbox Directories
The Documents directory is intended to store your nontransient application
data, such as user-created content or local information allowing the app
to run in offline mode. If UIFileSharingEnabled is set in your application’s
Info.plist file, files here will be accessible via iTunes.

Data files that other applications ask your app to open are stored in your
application’s Documents/Inbox directory. These will be invoked by the calling
application using the UIDocumentInteractionController class.5

You can only read or delete files stored in the Inbox directory. These
files come from another application that can’t write to your app directory,
so they’re put there by a higher-privileged system process. You may want
to consider deleting these files periodically or giving the user the option to
delete them because it will not be apparent to the user what documents are
stored here and whether they contain sensitive information.

4. Note that not all directories that can exist in this directory tree will exist for every application;
some are created on the fly only when certain APIs are used by the app.

5. http://developer.apple.com/library/ios/#documentation/FileManagement/Conceptual/
DocumentInteraction_TopicsForIOS

34 Chapter 3

http://developer.apple.com/library/ios/#documentation/FileManagement/Conceptual/DocumentInteraction_TopicsForIOS
http://developer.apple.com/library/ios/#documentation/FileManagement/Conceptual/DocumentInteraction_TopicsForIOS

If you’re writing an application with the goal of ensuring sensitive infor-
mation doesn’t remain on disk, copy documents out of the Inbox directory
to a separate location where you can apply Data Protection and then remove
those files from the Inbox directory.

It’s also worth remembering that under certain circumstances, any file
your application asks to open may persist on the disk forever. If you attempt
to open a file type that your program isn’t a handler for, then that file will
be passed off to a third-party app, and who knows when the other app will
delete it? It may get stored indefinitely. In other words, the cleanup of any
file that you ask another app to open is beyond your control, even if you
simply preview the contents using the Quick Look API. If having Inbox files
kick around for a long time is problematic, consider giving your application
the ability to view such data on its own (rather than relying on a helper) and
then make sure to dispose of the files properly.

The Library Directory
The Library directory contains the majority of your application’s files, includ-
ing data cached by the application or by particular networking constructs. It
will be backed up via iTunes and to iCloud, with the exception of the Caches
directory.

The Application Support Directory
The Application Support directory is not for storing files created or received
by the user but rather for storing additional data files that will be used by
your application. Examples would be additional purchased downloadable
content, configuration files, high scores, and so on—as the name implies,
things that support the running and operation of the application. Either
these files can be deployed when the application is first installed or they
can be downloaded or created by your application later.

By default, iTunes backs up the data in this directory to your com-
puter and to iCloud. However, if you have privacy or security concerns
about this data being stored in Apple’s cloud environment, you can explic-
itly disallow this by setting the NSURLIsExcludedFromBackupKey attribute on newly
created files. I’ll discuss preventing data from syncing to iCloud further in
Chapter 10.

Note that Apple requires that applications back up only user data to
iCloud (including documents they’ve created, configuration files, and
so forth), never application data. Applications that allow application con-
tent, such as downloadable app content, to be backed up to iCloud can be
rejected from the App Store.

The Caches and Snapshots Directories
The Caches directory is similar in function to a web browser’s cache: it’s
intended for data that your application will keep around for performance
reasons but not for data that is crucial for the application to function. As
such, this directory won’t be backed up by iTunes.

iOS Application Anatomy 35

While Apple states that your application is responsible for managing
the Caches directory, the OS does actually manipulate the directory’s con-
tents and that of its subfolder, Snapshots. Always consider the contents of the
Caches directory to be transient, and expect it to disappear between program
launches. iOS will cull these cache directories automatically if the system
starts running low on space, though it won’t do this while the application is
running.

The Caches directory also sometimes stores web cache content in a
subdirectory such as Caches/com.mycompany.myapp. This is one place where
sensitive data can leak because iOS can cache information delivered over
HTTPS for quite a long time. If the developer hasn’t made special effort to
prevent data from being cached or to expire cached data quickly, you can
often find some goodies in here.

Finally, when an application is put into the background, the OS also
automatically stores screenshots of the application in the Snapshots sub-
directory, potentially leaving sensitive information on local storage. This
is done for one reason: so that the OS can use the current screen state to
create the “whooshing” animation that happens when you bring an appli-
cation to the foreground. Unfortunately, a side effect I frequently see in
iOS applications is that the disk stores images of people’s Social Security
numbers, user details, and so on. I’ll discuss mitigation strategies for this
(and many other caching problems) in Chapter 10.

The Cookies Directory
The Cookies directory stores cookies set by the URL loading system. When
you make an NSURLRequest, any cookies will be set according to either the
default system cookie policy or one that you’ve specified. Unlike on OS X,
cookies on iOS are not shared between applications; each application will
have its own cookie store in this directory.

The Preferences Directory
iOS stores application preferences in the Preferences directory, but it doesn’t
allow applications to write directly to the files there. Instead, files in this
directory are created, read, and manipulated by either the NSUserDefaults or
CFPreferences API.

These APIs store application preference files in plaintext; therefore, you
most definitely should not use them to store sensitive user information or
credentials. When examining an application to see what information it’s
storing locally, be sure to examine the plist files in the Preferences directory.
You’ll sometimes find usernames and passwords, API access keys, or security
controls that are not meant to be changed by users.

36 Chapter 3

The Saved Application State Directory
Users expect apps to remember what they enter into text fields, which set-
tings they’ve enabled, and so on. If a user switches to another application
and then restores the original application at a later time, the application
may have actually been killed by the operating system during the interval.
To make it so that the UI remains consistent between program launches,
recent versions of iOS store object state information in the Saved Application
State directory by the State Preservation API.6 Developers can tag specific
parts of their UI to be included in State Preservation.

If you’re not careful about what you store as part of the application state,
this is one place you can wind up with data leaks. I’ll discuss how to avoid
those in depth in Chapter 10.

The tmp Directory
As you might surmise, tmp is where you store transient files. Like the Caches
directory, the files contained in this directory may be automatically removed
by the OS while your application isn’t running. The usage of this directory
is fairly similar to that of the Caches directory; the difference is that Caches
is meant to be used for files that might need to be retrieved again or re-
created. For example, if you download certain application data from a
remote server and want to keep it around for performance reasons, you’d
store that in Caches and redownload it if it disappears. On the other hand,
tmp is for strictly temporary files generated by the application—in other
words, files that you won’t miss if they’re deleted before you can revisit them.
Also, like the Caches directory, tmp is not backed up to iTunes or iCloud.

The Shared Directory
The Shared directory is a bit of a special case. It’s for applications that share
a particular app group (introduced in iOS 8 to support extensions), such
as those that modify the behavior of the Today screen or keyboard. Apple
requires all extensions to have a container application, which receives
its own app ID. The Shared directory is the way that the extension and its
containing app share data. For example, apps can access databases of
shared user defaults by specifying a suite name during initialization of
NSUserDefaults, like this:

[[NSUserDefaults alloc] initWithSuiteName:@"com.myorg.mysharedstuff"];

While the Shared directory isn’t commonly used at the time of writing,
it’s prudent to check this directory when looking for any sensitive informa-
tion potentially stored in preferences or other private data.

6. http://developer.apple.com/library/ios/documentation/iPhone/Conceptual/
iPhoneOSProgrammingGuide/iPhoneAppProgrammingGuide.pdf (page 69)

iOS Application Anatomy 37

http://developer.apple.com/library/ios/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/iPhoneAppProgrammingGuide.pdf
http://developer.apple.com/library/ios/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/iPhoneAppProgrammingGuide.pdf

Closing Thoughts
With a basic understanding of the iOS security model, the Cocoa API, and
how iOS applications are laid out, you’re now ready to move on to the fun
stuff: tearing apart applications and finding their flaws. In Part II, I’ll show
you how to build your testing platform, debug and profile applications, and
deal with testing third-party apps for which source code is available.

38 Chapter 3

PART II
SECURITY TESTING

4
BUILDING YOUR TEST PLATFORM

In this chapter, I’ll outline the tools you need to
review your code and test your iOS applications, and
I’ll show you how to build a robust and useful test plat-
form. That test platform will include a properly set up
Xcode instance, an interactive network proxy, reverse
engineering tools, and tools to bypass iOS platform
security checks.

I’ll also cover the settings you need to change in Xcode projects to
make bugs easier to identify and fix. You’ll then learn to leverage Xcode’s
static analyzer and compiler options to produce well-protected binaries and
perform more in-depth bug detection.

Taking Off the Training Wheels
A number of behaviors in a default OS X install prevent you from really
digging in to the system internals. To get your OS to stop hiding the things
you need, enter the following commands at a Terminal prompt:

$ defaults write com.apple.Finder AppleShowAllFiles TRUE

$ defaults write com.apple.Finder ShowPathbar -bool true

$ defaults write com.apple.Finder _FXShowPosixPathInTitle -bool true

$ defaults write NSGlobalDomain AppleShowAllExtensions -bool true

$ chflags nohidden ~/Library/

These settings let you see all the files in the Finder, even ones that are
hidden from view because they have a dot in front of their name. In addi-
tion, these changes will display more path information and file extensions,
and most importantly, they allow you to see your user-specific Library, which
is where the iOS Simulator will store all of its data.

The chflags command removes a level of obfuscation that Apple has
put on directories that it considers too complicated for you, such as /tmp or
/usr. I’m using the command here to show the contents of the iOS Simulator
directories without having to use the command line every time.

One other thing: consider adding $SIMPATH to the Finder’s sidebar
for easy access. It’s convenient to use $SIMPATH to examine the iOS Simula-
tor’s filesystem, but you can’t get to it in the Finder by default. To make this
change, browse to the following directory in the Terminal:

$ cd ~/Library/Application\ Support

$ open .

Then, in the Finder window that opens, drag the iPhone Simulator
directory to the sidebar. Once you’re riding without training wheels, it’s
time to choose your testing device.

Suggested Testing Devices
My favorite test device is the Wi-Fi only iPad because it’s inexpensive and
easy to jailbreak, which allows for testing iPad, iPhone, and iPod Touch
applications. Its lack of cellular-based networking isn’t much of a hindrance,
given that you’ll want to intercept network traffic most of the time anyway.

But this configuration does have some minor limitations. Most signif-
icantly, the iPad doesn’t have GPS or SMS, and it obviously doesn’t make
phone calls. So it’s not a bad idea to have an actual iPhone of some kind
available.

I prefer to have at least two iPads handy for iOS testing: one jailbro-
ken and one stock. The stock device allows for testing in a legitimate, real-
istic end-user environment, and it has all platform security mechanisms
still intact. It can also register properly for push notifications, which has
proven problematic for jailbroken devices in the past. The jailbroken device
allows you to more closely inspect the filesystem layout and more detailed
workings of iOS; it also facilitates black-box testing that wouldn’t be feasible
using a stock device alone.

42 Chapter 4

Testing with a Device vs. Using a Simulator
Unlike some other mobile operating systems, iOS development uses a simula-
tor rather than an emulator. This means there’s no full emulation of the iOS
device because that would require a virtualized ARM environment. Instead,
the simulators that Apple distributes with Xcode are compiled for the x64
architecture, and they run natively on your development machine, which
makes the process significantly faster and easier. (Try to boot the Android
emulator inside a virtual machine, and you’ll appreciate this feature.)

On the flip side, some things simply don’t work the same way in the iOS
Simulator as they do on the device. The differences are as follows:

Case-sensitivity Unless you’ve intentionally changed this behavior,
OS X systems operate with case-insensitive HFS+ filesystems, while iOS
uses the case-sensitive variant. This should rarely be relevant to security
but can cause interoperability issues when modifying programs.

Libraries In some cases, iOS Simulator binaries link to OS X frame-
works that may behave differently than those on iOS. This can result in
slightly different behavior.

Memory and performance Since applications run natively in the
iOS Simulator, they’ll be taking full advantage of your development
machine’s resources. When gauging the impact of things such as
PBKDF2 rounds (see Chapter 13), you’ll want to compensate for this
or test on a real device.

Camera As of now, the iOS Simulator does not use your development
machine’s camera. This is rarely a huge issue, but some applications
do contain functionality such as “Take a picture of my check stub or
receipt,” where the handling of this photo data can be crucial.

SMS and cellular You can’t test interaction with phone calls or SMS
integration with the iOS Simulator, though you can technically simulate
some aspects, such as toggling the “in-call” status bar.

Unlike in older versions of iOS, modern versions of the iOS Simulator
do in fact simulate the Keychain API, meaning you can manage your own
certificate and store and manipulate credentials. You can find the files
behind this functionality in $SIMPATH/Library/Keychains.

Network and Proxy Setup
Most of the time, the first step in testing any iOS application is to run it
through a proxy so you can examine and potentially modify traffic going
from the device to its remote endpoint. Most iOS security testers I know use
BurpSuite1 for this purpose.

1. http://www.portswigger.net

Building Your Test Platform 43

http://www.portswigger.net

Bypassing TLS Validation
There’s one major catch to running an app under test through a proxy:
iOS resolutely refuses to continue TLS/SSL connections when it cannot
authenticate the server’s certificate, as well it should. This is, of course, the
correct behavior, but your proxy-based testing will screech to a halt rather
quickly if iOS can’t authenticate your proxy’s certificate.

For BurpSuite specifically, you can obtain a CA certificate simply by
configuring your device or iOS Simulator to use Burp as a proxy and then
browsing to http://burp/cert/ in Mobile Safari. This should work either on a
real device or in the iOS Simulator. You can also install CA certificates onto
a physical device by either emailing them to yourself or navigating to them
on a web server.

For the iOS Simulator, a more general approach that works with almost
any web proxy is to add the fingerprint of your proxy software’s CA certifi-
cate directly into the iOS Simulator trust store. The trust store is a SQLite
database, making it slightly more cumbersome to edit than typical certifi-
cate bundles. I recommend writing a script to automate this task. If you
want to see an example to get you started, Gotham Digital Science has
already created a Python script that does the job. You’ll find the script
here: https://github.com/GDSSecurity/Add-Trusted-Certificate-to-iOS-Simulator/ .

To use this script, you need to obtain the CA certificate you want to
install into the trust store. First configure Firefox2 to use your local proxy
(127.0.0.1, port 8080 for Burp). Then attempt to visit any SSL site; you
should get a familiar certificate warning. Navigate to Add Exception →
View → Details and click the PortSwigger CA entry, as shown in Figure 4-1.

Click Export and follow the prompts. Once you’ve saved the CA certifi-
cate, open Terminal.app and run the Python script to add the certificate to
the store as follows:

$ python ./add_ca_to_iossim.py ~/Downloads/PortSwiggerCA.pem

Unfortunately, at the time of writing, there isn’t a native way to config-
ure the iOS Simulator to go through an HTTP proxy without also routing
the rest of your system through the proxy. Therefore, you’ll need to config-
ure the proxy in your host system’s Preferences, as shown in Figure 4-2.

If you’re using the machine for both testing and other work activities,
you might consider specifically configuring other applications to go through
a separate proxy, using something like FoxyProxy3 for your browser.

2. I generally consider Chrome a more secure daily browser, but the self-contained nature of
Firefox does let you tweak proxy settings more conveniently.

3. http://getfoxyproxy.org

44 Chapter 4

http://burp/cert/
https://github.com/GDSSecurity/Add-Trusted-Certificate-to-iOS-Simulator/
http://getfoxyproxy.org

Figure 4-1: Selecting the PortSwigger CA for export

Figure 4-2: Configuring the host system to connect via Burp
Building Your Test Platform 45

Bypassing SSL with stunnel
One method of bypassing SSL endpoint verification is to set up a termina-
tion point locally and then direct your application to use that instead. You
can often accomplish this without recompiling the application, simply by
modifying a plist file containing the endpoint URL.

This setup is particularly useful if you want to observe traffic easily
in plaintext (for example, with Wireshark), but the Internet-accessible
endpoint is available only over HTTPS. First, download and install stun-
nel,4 which will act as a broker between the HTTPS endpoint and your
local machine. If installed via Homebrew, stunnel’s configuration file will
be in /usr/local/etc/stunnel/stunnel.conf-sample. Move or copy this file to
/usr/local/etc/stunnel/stunnel.conf and edit it to reflect the following:

; SSL client mode

client = yes

; service-level configuration

[https]

accept = 127.0.0.1:80

connect = 10.10.1.50:443

TIMEOUTclose = 0

This simply sets up stunnel in client mode, instructing it to accept con-
nections on your loopback interface on port 80, while forwarding them to
the remote endpoint over SSL. After editing this file, set up Burp so that it
uses your loopback listener as a proxy, making sure to select the Support
invisible proxying option, as shown in Figure 4-3. Figure 4-4 shows the result-
ing setup.

Figure 4-3: Setting up invisible proxying through the local stunnel endpoint

4. http://www.stunnel.org/

46 Chapter 4

http://www.stunnel.org/

Figure 4-4: Final Burp/stunnel setup

Certificate Management on a Device
To install a certificate on a physical iOS device, simply email the certificate
to an account associated with the device or put it on a public web server and
navigate to it using Mobile Safari. You can then import it into the device’s
trust store, as shown in Figure 4-5. You can also configure your device to go
through a network proxy (that is, Burp) hosted on another machine. Simply
install the CA certificate (as described earlier) of the proxy onto the device
and configure your proxy to listen on a network-accessible IP address, as in
Figure 4-6.

Figure 4-5: The certificate import prompt

Figure 4-6: Configuring Burp to use a nonlocalhost IP address

Building Your Test Platform 47

Proxy Setup on a Device
Once you’ve configured your certificate authorities and set up the proxy,
go to Settings → Network → Wi-Fi and click the arrow to the right of your
currently selected wireless network. You can enter the proxy address and
port from this screen (see Figure 4-7).

Figure 4-7: Configuring the device to use a
test proxy on an internal network

Note that when configuring a device to use a proxy, only connections
initiated by NSURLConnection or NSURLSession will obey the proxy settings; other
connections such as NSStream and CFStream (which I’ll discuss further in Chap-
ter 7) will not. And of course, since this is an HTTP proxy, it works only for
HTTP traffic. If you have an application using CFStream, you can edit the
codebase with the following code snippet to route stream traffic through the
same proxy as the host OS:

CFDictionaryRef systemProxySettings = CFNetworkCopySystemProxySettings();

CFReadStreamSetProperty(readStream, kCFStreamPropertyHTTPProxy, systemProxySettings

);

CFWriteStreamSetProperty(writeStream, kCFStreamPropertyHTTPProxy,

systemProxySettings);

48 Chapter 4

If you’re using NSStream, you can accomplish the same by casting the
NSInputStream and NSOutputStream to their Core Foundation counterparts,
like so:

CFDictionaryRef systemProxySettings = CFNetworkCopySystemProxySettings();

CFReadStreamSetProperty((CFReadStreamRef)readStream, kCFStreamPropertyHTTPProxy, (

CFTypeRef)systemProxySettings);

CFWriteStreamSetProperty((CFWriteStreamRef)writeStream, kCFStreamPropertyHTTPProxy,

(CFTypeRef)systemProxySettings);

If you’re doing black-box testing and have an app that refuses to honor
system proxy settings for HTTP requests, you can attempt to direct traffic
through a proxy by adding a line to /etc/hosts on the device to point name
lookups to your proxy address, as shown in Listing 4-1.

10.50.22.11 myproxy api.testtarget.com

Listing 4-1: Adding a hosts file entry

You can also configure the device to use a DNS server controlled by you,
which doesn’t require jailbreaking your test device. One way to do this is to
use Tim Newsham’s dnsRedir,5 a Python script that will provide a spoofed
answer for DNS queries of a particular domain, while passing on queries for
all other domains to another DNS server (by default, 8.8.8.8, but you can
change this with the -d flag). The script can be used as follows:

$ dnsRedir.py 'A:www.evil.com.=1.2.3.4'

This should answer queries for www.evil.com with the IP address 1.2.3.4,
where that IP address should usually be the IP address of the test machine
you’re proxying data through.

For non-HTTP traffic, things are a little more involved. You’ll need to
use a TCP proxy to intercept traffic. The aforementioned Tim Newsham has
written a program that can make this simpler—the aptly named tcpprox.6 If
you use the hosts file method in Listing 4-1 to point the device to your proxy
machine, you can then have tcpprox dynamically create SSL certificates and
proxy the connection to the remote endpoint. To do this, you’ll need to
create a certificate authority certificate and install it on the device, as shown
in Listing 4-2.

5. https://github.com/iSECPartners/dnsRedir/

6. https://github.com/iSECPartners/tcpprox/

Building Your Test Platform 49

https://github.com/iSECPartners/dnsRedir/
https://github.com/iSECPartners/tcpprox/

$./prox.py -h

Usage: prox.py [opts] addr port

Options:

-h, --help show this help message and exit

-6 Use IPv6

-b BINDADDR Address to bind to

-L LOCPORT Local port to listen on

-s Use SSL for incoming and outgoing connections

--ssl-in Use SSL for incoming connections

--ssl-out Use SSL for outgoing connections

-3 Use SSLv3 protocol

-T Use TLSv1 protocol

-C CERT Cert for SSL

-A AUTOCNAME CName for Auto-generated SSL cert

-1 Handle a single connection

-l LOGFILE Filename to log to

$./ca.py -c

$./pkcs12.sh ca

(install CA cert on the device)

$./prox.py -s -L 8888 -A ssl.testtarget.com ssl.testtarget.com 8888

Listing 4-2: Creating a certificate and using tcpprox to intercept traffic

The ca.py script creates the signed certificate, and the pkcs12.sh script
produces the certificate to install on the device, the same as shown in Fig-
ure 4-5. After running these and installing the certificate, your application
should connect to the remote endpoint using the proxy, even for SSL con-
nections. Once you’ve performed some testing, you can read the results with
the proxcat.py script included with tcpprox, as follows:

$./proxcat.py -x log.txt

Once your application is connected through a proxy, you can start
setting up your Xcode environment.

Xcode and Build Setup
Xcode contains a twisty maze of project configuration options—hardly
anyone understands what each one does. This section takes a closer look
at these options, discusses why you would or wouldn’t want them, and
shows you how to get Xcode to help you find bugs before they become real
problems.

50 Chapter 4

Make Life Difficult
First things first: treat warnings as errors. Most of the warnings generated by
clang, Xcode’s compiler frontend, are worth paying attention to. Not only
do they often help reduce code complexity and ensure correct syntax, they
also catch a number of errors that might be hard to spot, such as signedness
issues or format string flaws. For example, consider the following:

- (void) validate:(NSArray*) someTribbles withValue:(NSInteger) desired {

if (desired > [someTribbles count]) {

[self allocateTribblesWithNumberOfTribbles:desired];

}

}

The count method of NSArray returns an unsigned integer, (NSUInteger).
If you were expecting the number of desired tribbles from user input, a
submitted value might be –1, presumably indicating that the user would
prefer to have an anti-tribble. Because desired is an integer being compared
to an unsigned integer, the compiler will treat both as unsigned integers.
Therefore, this method would unexpectedly allocate an absurd number
of tribbles because –1 is an extremely large number when converted to an
unsigned integer. I’ll discuss this type of integer overflow issue further in
Chapter 11.

You can have clang flag this type of of bug by enabling most warn-
ings and treating them as errors, in which case your build would fail with
a message indicating "Comparison of integers of different signs: 'int'

and 'NSUInteger' (aka 'unsigned int')".

NOTE In general, you should enable all warnings in your project build configuration and
promote warnings to errors so that you are forced to deal with bugs as early as possible
in the development cycle.

You can enable these options in your project and target build settings.
To do so, first, under Warning Policies, set Treat Warnings as Errors to Yes
(Figure 4-8). Then, under the Warnings sections, turn on all the desired
options.

Note that not every build warning that clang supports has an exposed
toggle in the Xcode UI. To develop in “hard mode,” you can add the -Wextra

or -Weverything flag, as in Figure 4-9. Not all warnings will be useful, but it’s
best to try to understand exactly what an option intends to highlight before
disabling it.

-Weverything, used in Figure 4-9, is probably overkill unless you’re curious
about clang internals; -Wextra is normally sufficient. To save you a bit of time,
Table 4-1 discusses two warnings that are almost sure to get in your way (or
that are just plain bizarre).

Building Your Test Platform 51

Figure 4-8: Treating all warnings as errors

Figure 4-9: This setting enables all warnings, including options for which there is no
exposed UI.

52 Chapter 4

Table 4-1: Obnoxious Warnings to Disable in Xcode

Compiler warning Justification for disabling

Implicit synthesized properties Since property synthesis is now auto-
matic, this isn’t really an error unless
your development guidelines require
explicit synthesis.

Unused parameters/functions/variables etc. These can be supremely irritating
when writing code, since your code is
obviously not completely implemented
yet. Consider enabling these only for
nondebug builds.

Enabling Full ASLR
In iOS 4.3, Apple introduced address space layout randomization (ASLR). ASLR
ensures that the in-memory structure of the program and its data (libraries,
the main executable, stack and heap, and memory-mapped files) are loaded
into less predictable locations in the virtual address space. This makes code
execution exploits more difficult because many rely on referencing the
virtual addresses of specific library calls, as well as referencing data on the
stack or heap.

For this to be fully effective, however, the application must be built as
a position-independent executable (PIE), which instructs the compiler to build
machine code that can function regardless of its location in memory. With-
out this option, the location of the base executable and the stack will remain
the same, even across reboots,7 making an attacker’s job much easier.

To ensure that full ASLR with PIE is enabled, check that Deployment
Target in your Target’s settings is set to at least iOS version 4.3. In your
project’s Build Settings, ensure that Generate Position-Dependent Code
is set to No and that the bizarrely named Don’t Create Position Independent
Executable is also set to No. So don’t create position-independent executa-
bles. Got it?

For black-box testing or to ensure that your app is built with ASLR cor-
rectly, you can use otool on the binary, as follows:

$ unzip MyApp.ipa

$ cd Payload/MyApp.app

$ otool -vh MyApp

MyApp (architecture armv7):

Mach header

magic cputype cpusubtype caps filetype ncmds sizeofcmds flags

MH_MAGIC ARM V7 0x00 EXECUTE 21 2672 NOUNDEFS DYLDLINK

TWOLEVEL PIE

7. http://www.trailofbits.com/resources/ios4_security_evaluation_paper.pdf

Building Your Test Platform 53

http://www.trailofbits.com/resources/ios4_security_evaluation_paper.pdf

MyApp (architecture armv7s):

Mach header

magic cputype cpusubtype caps filetype ncmds sizeofcmds flags

MH_MAGIC ARM V7S 0x00 EXECUTE 21 2672 NOUNDEFS DYLDLINK

TWOLEVEL PIE

At the end of each MH_MAGIC line, if you have your settings correct, you
should see the PIE flag, highlighted in bold. (Note that this must be done
on a binary compiled for an iOS device and will not work when used on iOS
Simulator binaries.)

Clang and Static Analysis
In computer security, static analysis generally refers to using tools to analyze
a codebase and identify security flaws. This could involve identifying dan-
gerous APIs, or it might include analyzing data flow through the program
to identify the potentially unsafe handling of program inputs. As part of the
build tool chain, clang is a good spot to embed static analysis language.

Beginning with Xcode 3.2, clang’s static analyzer8 has been integrated
with Xcode, providing users with a UI to trace logic, coding flaws, and
general API misuse. While clang’s static analyzer is handy, several of its
important features are disabled by default in Xcode. Notably, the checks
for classic dangerous C library functions, such as strcpy and strcat, are oddly
absent. Enable these in your Project or Target settings, as in Figure 4-10.

Figure 4-10: Enabling all clang static analysis checks in Xcode

8. http://clang-analyzer.llvm.org/
54 Chapter 4

http://clang-analyzer.llvm.org/

Address Sanitizer and Dynamic Analysis
Recent versions of Xcode include a version of clang/llvm that features the
Address Sanitizer (ASan). ASan is a dynamic analysis tool similar to Valgrind,
but ASan runs faster and has improved coverage.9 ASan tests for stack and
heap overflows and use-after-free bugs, among other things, to help you
track down crucial security flaws. It does have a performance impact (pro-
gram execution is estimated to be roughly two times slower), so don’t enable
it on your release builds, but it should be perfectly usable during testing,
quality assurance, or fuzzing runs.

To enable ASan, add -fsanitize=address to your compiler flags for debug
builds (see Figure 4-11). On any unsafe crashes, ASan should write extra
debug information to the console to help you determine the nature and
severity of the issues. In conjunction with fuzzing,10 ASan can be a great help
in pinning down serious issues that may be security-sensitive and in giving an
idea of their exploitability.

Figure 4-11: Setting the ASan compiler flags

Monitoring Programs with Instruments
Regardless of whether you’re analyzing someone else’s application or trying
to improve your own, the DTrace-powered Instruments tool is extremely
helpful for observing an app’s activity on a fine-grained level. This tool is
useful for monitoring network socket usage, finding memory allocation
issues, and watching filesystem interactions. Instruments can be an excellent
tool for discovering what objects an application stores on local storage in
order to find places where sensitive information might leak; I use it in that
way frequently.

Activating Instruments
To use Instruments on an application from within Xcode, hold down the
Run button and select the Build for Profiling option (see Figure 4-12).
After building, you will be presented with a list of preconfigured templates
tailored for monitoring certain resources, such as disk reads and writes,
memory allocations, CPU usage, and so on.

9. http://clang.llvm.org/docs/AddressSanitizer.html

10. http://blog.chromium.org/2012/04/fuzzing-for-security.html
Building Your Test Platform 55

http://clang.llvm.org/docs/AddressSanitizer.html
http://blog.chromium.org/2012/04/fuzzing-for-security.html

Figure 4-12: Selecting the Build for Profiling option

The File Activity template (shown in Figure 4-13) will help you monitor
your application’s disk I/O operations. After selecting the template, the iOS
Simulator should automatically launch your application and begin recording
its activity.

Figure 4-13: Selecting the File Activity profiling template

There are a few preset views in Instruments for monitoring file activity.
A good place to start is Directory I/O, which will capture all file creation
or deletion events. Test your application the way you normally would and
watch the output here. Each event is listed with its Objective-C caller, the C
function call underlying it, the file’s full path, and its new path if the event is
a rename operation.

You’ll likely notice several types of cache files being written here (see
Figure 4-14), as well as cookies or documents your application has been
asked to open. If you suspend your application, you should see the applica-
tion screenshot written to disk, which I’ll discuss in Chapter 10.

For a more detailed view, you can select the Reads/Writes view, as shown
in Figure 4-15. This will show any read or write operations on files or sockets,
along with statistics on the amount of data read or written.

56 Chapter 4

Figure 4-14: Directory I/O view showing files created or deleted

Figure 4-15: Profiling results showing detailed file reads and writes

Building Your Test Platform 57

Watching Filesystem Activity with Watchdog
Instruments should catch most iOS Simulator activity, but some file writes
or network calls may actually be performed by other system services, thereby
escaping the tool’s notice. It’s a good idea to manually inspect the iOS Simu-
lator’s directory tree to get a better feel for the structure of iOS and its appli-
cations and to catch application activity that you might otherwise miss.

One easy way to automate this is to use the Python watchdog module.11

Watchdog will use either the kqueue or FSEvents API to monitor directory
trees for file activity and can either log events or take specific actions when
these events occur. To install watchdog, use the following:

$ pip install watchdog

You can write your own scripts to use watchdog’s functionality, but
you’ll find a nice command line tool already included with watchdog called
watchmedo. If you open a Terminal window and navigate to the Simulator
directory, you should be able to use watchmedo to monitor all file changes
under the iOS Simulator’s directory tree, as follows:

$ cd ~/Library/Application\ Support/iPhone\ Simulator/6.1

$ watchmedo log --recursive .

on_modified(self=<watchdog.tricks.LoggerTrick object at 0x103c9b190>, event=<

DirModifiedEvent: src_path=/Users/dthiel/Library/Application Support/iPhone

Simulator/6.1/Library/Preferences>)

on_created(self=<watchdog.tricks.LoggerTrick object at 0x103c9b190>, event=<

FileCreatedEvent: src_path=/Users/dthiel/Library/Application Support/iPhone

Simulator/6.1/Applications/9460475C-B94A-43E8-89C0-285DD036DA7A/Library/Caches

/Snapshots/com.yourcompany.UICatalog/UIApplicationAutomaticSnapshotDefault-

Portrait.png>)

on_modified(self=<watchdog.tricks.LoggerTrick object at 0x103c9b190>, event=<

DirModifiedEvent: src_path=/Users/dthiel/Library/Application Support/iPhone

Simulator/6.1/Applications/9460475C-B94A-43E8-89C0-285DD036DA7A/Library/Caches

/Snapshots>)

on_created(self=<watchdog.tricks.LoggerTrick object at 0x103c9b190>, event=<

DirCreatedEvent: src_path=/Users/dthiel/Library/Application Support/iPhone

Simulator/6.1/Applications/9460475C-B94A-43E8-89C0-285DD036DA7A/Library/Caches

/Snapshots/com.yourcompany.UICatalog>)

on_modified(self=<watchdog.tricks.LoggerTrick object at 0x103c9b190>, event=<

DirModifiedEvent: src_path=/Users/dthiel/Library/Application Support/iPhone

Simulator/6.1/Library/SpringBoard>)

11. https://pypi.python.org/pypi/watchdog/

58 Chapter 4

https://pypi.python.org/pypi/watchdog/

Entries that start with on on_modified indicate a file was changed, and
entries that start with on_created indicate a new file. There are several other
change indicators you might see from watchmedo, and you can read about
them in the Watchdog documentation.

Closing Thoughts
You should now have your build and test environment configured for run-
ning, modifying, and examining iOS apps. In Chapter 5, we’ll take a closer
look at how to debug and inspect applications dynamically, as well as how to
change their behavior at runtime.

Building Your Test Platform 59

5
DEBUGGING WITH LLDB

AND FRIENDS

Debugging iOS applications is considered one of
Xcode’s strong components. In addition to the useful
analysis features of DTrace, Xcode has a command
line debugger with a relatively approachable graphi-
cal interface. As part of Apple’s migration away from
GNU utilities, the default debugger is now lldb,1 which
provides first-class support for Objective-C. Multithreaded debugging is well-
supported, and you can even inspect objects from the debugger. The only
downside is that you’ll have to translate your hard-won knowledge of gdb to
a new environment.

Debugging is a vast topic, and there are multiple books on the subject.2

This chapter covers the basics for people new to Xcode, along with tips
relevant to security testing and secure development. I assume you have some
familiarity with gdb and debuggers in general.

1. http://lldb.llvm.org/

2. For a detailed resource on debugging in Xcode, I recommend iOS 7 Programming: Pushing the
Limits; see http://iosptl.com/ .

http://lldb.llvm.org/
http://iosptl.com/

Useful Features in lldb
Xcode’s built-in debugger interface is fairly powerful. It has a command
line, but you can also use the GUI to view and interact with the current
thread state, annotated assembly, and object details. The GUI includes a
central breakpoint browser as well, where you can view, enable, and disable
breakpoints.

NOTE If you’re extremely comfortable using gdb, the LLVM project has a mapping of fre-
quently used gdb commands to their lldb equivalents; see http://lldb.llvm.org/
lldb-gdb.html.

Working with Breakpoints
You can set breakpoints graphically from Xcode’s lldb interface (see Fig-
ure 5-1), or you can do so from the command line. In addition to breaking
when the program accesses a particular memory address or C function, you
can also break on specific Objective-C methods.

Figure 5-1: Xcode’s lldb interface

Here are some of the ways you can set breakpoints:

¶ (lldb) breakpoint set --name myfunction --name myotherfunction

· (lldb) breakpoint set --name "-[myClass methodCall:]"

¸ (lldb) breakpoint set --selector myObjCSelector:

¹ (lldb) breakpoint set --method myCPlusPlusMethod

The command at ¶ sets one breakpoint on multiple functions, a fea-
ture you can use to enable and disable groups of functions simultane-
ously. As shown at ·, you can also break on specific Objective-C instance
and class methods—these can be also be grouped in a manner similar to

62 Chapter 5

http://lldb.llvm.org/lldb-gdb.html
http://lldb.llvm.org/lldb-gdb.html

the C function calls at ¶. If you want to break on all calls to a particular
selector/method, use the --selector option ¸, which will break on any calls
to a selector of this name, regardless of what class they’re implemented in.
Finally, to break on specific C++ methods, simply specify --method instead of
--name when defining the breakpoint, as at ¹.

In practice, setting a breakpoint in lldb looks like this:

(lldb) breakpoint set --name main

Breakpoint 2: where = StatePreservator`main + 34 at main.m:15, address = 0x00002822

(lldb) breakpoint set -S encodeRestorableStateWithCoder:

Breakpoint 2: where = StatePreservator`-[StatePreservatorSecondViewController

encodeRestorableStateWithCoder:] + 44 at StatePreservatorSecondViewController.

m:25, address = 0x00002d5c

After you set a breakpoint, lldb shows the code you’re breaking on. If
you like, you can make this even simpler: like gdb, lldb recognizes keywords
using the shortest matching text. So breakpoint can be shortened to break, or
even b.

In the GUI, you can break on a particular line of code by clicking the
number in the gutter to the left of the line (see Figure 5-2). Clicking again
will disable the breakpoint. Alternatively, you can break on lines from the
lldb CLI using the --file filename.m --line 66 syntax.

Figure 5-2: Setting breakpoints on specific lines with the mouse. Deactivated
breakpoints are shaded a lighter gray.

When you want to create multiple breakpoints, it can be handy to use
the -r flag at the command line to break on functions matching a particular
regular expression, like so:

(lldb) break set -r tableView

Breakpoint 1: 4 locations.

(lldb) break list

Current breakpoints:

1: source regex = "tableView", locations = 4, resolved = 4

1.1: where = DocInteraction`-[DITableViewController tableView:

cellForRowAtIndexPath:] + 695 at DITableViewController.m:225, address = 0

x000032c7, resolved, hit count = 0

1.2: where = DocInteraction`-[DITableViewController tableView:

cellForRowAtIndexPath:] + 1202 at DITableViewController.m:245, address = 0

x000034c2, resolved, hit count = 0

Debugging with lldb and Friends 63

1.3: where = DocInteraction`-[DITableViewController tableView:

cellForRowAtIndexPath:] + 1270 at DITableViewController.m:246, address = 0

x00003506, resolved, hit count = 0

1.4: where = DocInteraction`-[DITableViewController tableView:

cellForRowAtIndexPath:] + 1322 at DITableViewController.m:247, address = 0

x0000353a, resolved, hit count = 0

This will set a single breakpoint with a number of locations. Each loca-
tion can be enabled and disabled, as shown here:

(lldb) break dis 1.4

1 breakpoints disabled.

(lldb) break list

Current breakpoints:

1: source regex = ".*imageView.*", locations = 4, resolved = 3

--snip--

1.4: where = DocInteraction`-[DITableViewController tableView:

cellForRowAtIndexPath:] + 1322 at DITableViewController.m:247, address = 0

x0000353a, unresolved, hit count = 0 Options: disabled

(lldb) break en 1.4

1 breakpoints disabled.

Notice that enabling and disabling locations works just like a regular
breakpoint; just use break disable and break enable and reference the right
numeric identifier.

Navigating Frames and Variables
Once you’ve arrived at a breakpoint, you can use lldb to examine the state of
your program. You can do this via either the command line, as in the other
lldb examples I’ve shown, or the visual lldb browser, as in Figure 5-3.

Figure 5-3: Examining frame variables from the command line and the GUI

64 Chapter 5

In addition to viewing and manipulating the variables of the current
frame, you can navigate the program threads and frames of the call stack
using the Debug Navigator, as shown in Figure 5-4.

Figure 5-4: Using the Debug Navigator to switch
frames and threads

Similar to using gdb, you can inspect the call stack of the current thread
with the bt (short for backtrace) command (see Listing 5-1). Normally, you
could also navigate frames using the typical up, down, and frame select com-
mands. In some versions of Xcode however, a bug causes the frame to
immediately revert to the frame selected in the Debug Navigator. In that
case, you must switch frames manually within the Debug Navigator to inspect
them individually.

(lldb) bt

* thread #1: tid = 0x11804c, 0x00002c07 StatePreservator`-[

StatePreservatorSecondViewController encodeRestorableStateWithCoder:](self=0

x07733c30, _cmd=0x005af437, coder=0x0756faf0) + 55 at

StatePreservatorSecondViewController.m:25, queue = 'com.apple.main-thread,

stop reason = breakpoint 1.1

frame #0: 0x00002c07 StatePreservator`-[StatePreservatorSecondViewController

encodeRestorableStateWithCoder:](self=0x07733c30, _cmd=0x005af437, coder=0

x0756faf0) + 55 at StatePreservatorSecondViewController.m:25

frame #1: 0x000277e7 UIKit`-[UIApplication(StateRestoration)

_saveApplicationPreservationState:] + 1955

frame #2: 0x00027017 UIKit`-[UIApplication(StateRestoration)

_saveApplicationPreservationStateIfSupported] + 434

frame #3: 0x0001b07b UIKit`-[UIApplication _handleApplicationSuspend:eventInfo

:] + 947

Debugging with lldb and Friends 65

frame #4: 0x00023e74 UIKit`-[UIApplication handleEvent:withNewEvent:] + 1469

frame #5: 0x00024beb UIKit`-[UIApplication sendEvent:] + 85

frame #6: 0x00016698 UIKit`_UIApplicationHandleEvent + 9874

frame #7: 0x01beddf9 GraphicsServices`_PurpleEventCallback + 339

frame #8: 0x01bedad0 GraphicsServices`PurpleEventCallback + 46

frame #9: 0x01c07bf5 CoreFoundation`

__CFRUNLOOP_IS_CALLING_OUT_TO_A_SOURCE1_PERFORM_FUNCTION__ + 53

frame #10: 0x01c07962 CoreFoundation`__CFRunLoopDoSource1 + 146

frame #11: 0x01c38bb6 CoreFoundation`__CFRunLoopRun + 2118

frame #12: 0x01c37f44 CoreFoundation`CFRunLoopRunSpecific + 276

frame #13: 0x01c37e1b CoreFoundation`CFRunLoopRunInMode + 123

frame #14: 0x01bec7e3 GraphicsServices`GSEventRunModal + 88

frame #15: 0x01bec668 GraphicsServices`GSEventRun + 104

frame #16: 0x00013ffc UIKit`UIApplicationMain + 1211

frame #17: 0x0000267d StatePreservator`main(argc=1, argv=0xbffff13c) + 141 at

main.m:16

Listing 5-1: Getting the current call stack with the backtrace command

To examine the variables of the current frame, you can use the frame

variable command, as shown in Listing ??.

(lldb) frame variable

(StatePreservatorSecondViewController *const) self = 0x0752d2e0

(SEL) _cmd = "encodeRestorableStateWithCoder:"

(NSCoder *) coder = 0x0d0234e0

Listing 5-2: Using the frame variable command

This will give you variable names and arguments of the local stack frame,
along with their types and memory addresses. You can also use the context
menu in the graphical debugger to print or edit variable contents; see Fig-
ure 5-5.

If you use frame select on its own, you can also see the program’s loca-
tion in the call stack, along with the relevant surrounding lines of code, as in
this example:

(lldb) frame select

frame #0: 0x00002d5c StatePreservator`-[StatePreservatorSecondViewController

encodeRestorableStateWithCoder:](self=0x0752d2e0, _cmd=0x005af437, coder=0

x0d0234e0) + 44 at StatePreservatorSecondViewController.m:25

22

23 -(void)encodeRestorableStateWithCoder:(NSCoder *)coder

24 {

-> 25 [coder encodeObject:[_myTextView text] forKey:@"UnsavedText"];

26 [super encodeRestorableStateWithCoder:coder];

27 }

28

66 Chapter 5

Figure 5-5: The variable context menu, showing options
for printing variable contents, setting watchpoints, and
viewing memory contents

The frame select command also takes a numeric argument for the stack
frame you want to inspect, if you’d like to look further up the call stack (see
Listing 5-3).

(lldb) frame select 4

frame #4: 0x00023e74 UIKit`-[UIApplication handleEvent:withNewEvent:] + 1469

UIKit`-[UIApplication handleEvent:withNewEvent:] + 1469:

-> 0x23e74: xorb %cl, %cl

0x23e76: jmp 0x24808

; -[UIApplication handleEvent:withNewEvent:] + 3921

0x23e7b: movl 16(%ebp), %ebx

0x23e7e: movl %ebx, (%esp)

Listing 5-3: Assembly shown while examining a stack frame

Note that for code outside of your current project, such as other parts of
the Cocoa API, the source will usually not be available; lldb will instead show
you the relevant assembly instructions.3

You can also inspect the values of objects using lldb’s po (short for print
object) command. For example, consider the following:

(lldb) po [self window]

$2 = 0x071848d0 <UIWindow: 0x71848d0; frame = (0 0; 320 480); hidden = YES; layer =

<UIWindowLayer: 0x71849a0>>

3. If you’d like further insight into assembly on iOS and ARM, check out Ray Wenderlich’s
tutorial at http://www.raywenderlich.com/37181/ios-assembly-tutorial/ .

Debugging with lldb and Friends 67

http://www.raywenderlich.com/37181/ios-assembly-tutorial/

Using po on your main window fetches the addresses and attributes of
that window.

Visually Inspecting Objects
If you’re using Xcode 5 or later, you can also hover the mouse over objects
to inspect the contents, as shown in Figure 5-6. If you drill down into indi-
vidual subobjects, you can either view their memory directly (Figure 5-7) by
clicking the i button or use the Quick Look “eye” button to see the contents
of the object represented as a fully rendered image, text, or any other data
type that OS X’s Quick Look API understands (see Figure 5-8). This is, in my
opinion, pretty badass.

Figure 5-6: Inspecting an object while at a breakpoint

Figure 5-7: Inspecting an object’s contents in memory

Figure 5-8: Examining the current state of a variable with the Quick Look button. In this
case, you’re looking at the _statusBar of the UIApplication delegate window, which
Xcode will display as an actual image.

68 Chapter 5

Manipulating Variables and Properties
You can do more than just view the contents of variables and objects from
lldb. For example, let’s try breaking on the same line used to test the frame

variable command back in Listing 5-2.

[coder encodeObject:[_myTextView text] forKey:@"UnsavedText"];

When the debugger reaches this line, imagine you want to examine the
contents of UITextView’s text attribute and change its value before the pro-
gram continues. You can do this with the expr command, using traditional
Objective-C syntax, as follows:

(lldb) po [_myTextView text]

$0 = 0x08154cb0 Foo

(lldb) expr (void)[_myTextView setText:@"Bar"]

(lldb) po [_myTextView text]

$1 = 0x0806b2e0 Bar

(lldb) cont

When execution resumes, the value of that text box in the UI should
have changed. Because lldb doesn’t know the return type of a method called
in this way, you have to specify the type using (void) with the expr command.
Similarly, if you were calling something that returned an int, you’d need to
explicitly cast to that type instead. For simple assignment operations, like
myInteger = 666 or similar, as opposed to method calls, simply enter expr and
the assignment as one command.

NOTE When using lldb from the command line in Xcode, the GUI will autocomplete object
method names, giving you a brief description and their return type. See Figure 5-9 for
an example.

Figure 5-9: Nifty lldb method name completion in Xcode

Debugging with lldb and Friends 69

Keep in mind that you’re not limited to manipulating objects that are
declared in your code. You can also manipulate framework classes.

(lldb) expr (void)[[UIPasteboard generalPasteboard] setString:@"my string"]

(lldb) po [[UIPasteboard generalPasteboard] string]

$5 = 0x071c6e50 my string

For this kind of interactive manipulation and interrogation, I often find
it useful to set a breakpoint on didReceiveMemoryWarning in the application
delegate because this method will be present in every application. When I
want to inspect the program’s state while running it in the iOS Simulator,
I select Hardware → Simulate Memory Warning. Once I’ve done my twid-
dling, I simply continue the application with cont. You can also do this from
the Xcode UI with the Pause Execution button.

Breakpoint Actions
Breakpoint actions are not well-documented but are quite useful. They allow
you to create breakpoints that trigger only under certain conditions, and
they can perform complex actions when these breakpoints are hit. You
can set them up to automatically resume execution after performing these
actions or even have them trigger only after a line is hit a certain number
of times. Logging and using speech synthesis to present program informa-
tion are the simplest actions you can set for a breakpoint, but you can also
interrogate objects, read and manipulate variables, and so forth. Basically,
breakpoint actions can do anything you can do from the lldb command line,
plus a few other niceties.

Let’s walk through creating a breakpoint action one step at a time.

1. Create a breakpoint by clicking in the breakpoint gutter.

2. CTRL-click the breakpoint and select Edit Breakpoint.

3. Click Add Action.

4. Check the Automatically continue after evaluating box.

5. For the simplest type of breakpoint action, simply select the Log mes-
sage action. Here, you can print simple messages, along with the break-
point name and hit count (see Figure 5-10). You can ignore the expres-
sion option because it’s not terribly straightforward to use.

6. After adding a simple log message, you can click the + button to add
another action. This time, select Debugger Command.

7. Here, you can enter basic lldb expressions—most commonly, using the
po command to print the description of an object. See Figure 5-11 for an
example.

70 Chapter 5

Figure 5-10: Using a breakpoint action to do a simple log entry. In this example,
you’ll log a message, along with the number of times the breakpoint has been hit,
using the %H placeholder.

Figure 5-11: In addition to simply logging, you can execute an arbitrary lldb
command. In this case, you’ll use the po command to print the description
of the object returned by the path method.

Debugging with lldb and Friends 71

8. Optionally, add a breakpoint condition to specify when the actions
you’ve defined are executed (Figure 5-12).

Figure 5-12: Two actions and a breakpoint condition. For the condition, you’ll
ensure that the length of the path is not zero before executing the breakpoint
action, specifying the return value (BOOL).

Try following these steps until you feel comfortable using breakpoint
actions, and then move on to the next section for some specific ways to apply
lldb in a security context.

Using lldb for Security Analysis
These are all useful tricks, but how do you put them together to find new
security issues or test security assertions? Let’s take a look at a couple sce-
narios where using the debugger can help you nail down more concrete
issues.

Fault Injection
Say you have an application that uses a custom binary network protocol
to marshal data between the client and a remote server. This can make it
difficult to intercept and modify data with an off-the-shelf proxy, but you’d
like to determine whether malformed data in certain parameters could
cause a program to crash. You can also manipulate data to make future
testing easier.

Since you can change data, you might want to replace, for example, a
randomly generated key with one of your choosing. You can do that from

72 Chapter 5

within the debugger, as shown in Listing 5-4. This results in data being
encrypted with a known key of your choosing, rather than a potentially
unprintable blob. The following example modifies the app’s crypto key
before it gets saved to the Keychain so that further communication uses a
different key:

¶ (lldb) frame var

(Class) self = SimpleKeychainWrapper

(SEL) _cmd = "addToKeychain:forService:"

(NSString *) identifier = 0x00005be4 @"com.isecpartners.CryptoKey"

(NSString *) service = 0x00005bf4 @"com.isecpartners.NSCoder+Crypto"

(NSMutableDictionary *) dictionary = 0x08b292f0 6 key/value pairs

(NSMutableData *) item = 0x08b2cee0

(OSStatus) status = 1

· (lldb) po item

<9aab766a 260bb165 57675f04 fdb982d3 d73365df 5fd4b05f 3c078f7b b6484b7d>

¸ (lldb) po dictionary

{

acct = <636f6d2e 69736563 70617274 6e657273 2e437279 70746f4b 6579>;

class = genp;

gena = <636f6d2e 69736563 70617274 6e657273 2e437279 70746f4b 6579>;

pdmn = aku;

svce = "com.isecpartners.NSCoder+Crypto";

"v_Data" = <9aab766a 260bb165 57675f04 fdb982d3 d73365df 5fd4b05f 3c078f7b

b6484b7d>;

}

¹ (lldb) expr (void)[dictionary setObject:@"mykey" forKey:(__bridge id)kSecValueData

];

º (lldb) po dictionary

{

acct = <636f6d2e 69736563 70617274 6e657273 2e437279 70746f4b 6579>;

class = genp;

gena = <636f6d2e 69736563 70617274 6e657273 2e437279 70746f4b 6579>;

pdmn = aku;

svce = "com.isecpartners.NSCoder+Crypto";

"v_Data" = mykey;

}

Listing 5-4: Inspecting and changing object values in memory

At ¶, the code prints the variables of the current frame, noting the argu-
ments sent to the addToKeychain:forService: selector. The key this example
is interested in is stored in the item argument and added to a dictionary.
Inspecting these (· and ¸) reveals the value of the key. The code then
alters the Keychain dictionary using the expr command ¹. At º, the pro-
gram verifies that the new NSString is now the current value of the key.

Debugging with lldb and Friends 73

Tracing Data
If you have an application that encrypts data with a master password, it may
be useful to examine that data before it gets encrypted. It may not always be
immediately obvious that data will hit the encryption routine by default.
Consider Listing 5-5:

¶ (lldb) frame variable

(CCCryptHelper *const) self = 0x07534b40

· (SEL) _cmd = "encrypt:"

¸ (NSString *) data = 0x0000c0ec @"PasswordManager"

(NSData *) encData = 0x07534b40 0 byte

(lldb) frame select

frame #0: 0x00006790 PasswordManager `-[CCCryptHelper encrypt:](self=0x07534b40,

_cmd=0x00009b1e, data=0x0000c0ec) + 48 at CCCryptHelper.m:82

80 - (NSData *)encrypt:(NSString *)data {

-> 81 NSData *encData = [self AES128EncryptData:[data dataUsingEncoding: NS

UTF8StringEncoding]

82 withKey:masterPassword];

Listing 5-5: Examining frame variables with lldb

If you break on the encrypt: selector ·, you can examine the local vari-
ables using the frame variable command ¶. Notice that the output shows
both data and encData. The former ¸ is the interesting bit in this example,
because that’s the data that will be encrypted and returned by the routine.
This tracing technique can also be used to examine and manipulate data to
be sent over the wire, before it hits the encryption routines.

Examining Core Frameworks
lldb is also useful for digging in to the weird quirks of Apple’s APIs—I rec-
ommend you use it when you’re confused by an API’s behavior. For instance,
when looking into NSURLCache, I noticed the behavior in Listing 5-6:

(lldb) expr (int)[[NSURLCache sharedURLCache] currentMemoryUsage]

(int) $0 = 158445

(lldb) expr (int)[[NSURLCache sharedURLCache] currentDiskUsage]

(int) $1 = 98304

¶ (lldb) expr (void)[[NSURLCache sharedURLCache] removeAllCachedResponses]

(lldb) expr (int)[[NSURLCache sharedURLCache] currentMemoryUsage]

(int) $3 = 0

74 Chapter 5

(lldb) expr (int)[[NSURLCache sharedURLCache] currentDiskUsage]

· (int) $4 = 98304

Listing 5-6: Some curious behavior of the NSURLCache API

Here, even though I called the removeAllCachedResponses method ¶, the
current disk usage is still 98304 bytes ·. Alas, it appears that clearing the
cache is useless. Fear not—you’ll see some solutions to this problem in
Chapter 9. In the meantime, you may want to play around with some of
the internals yourself. This can help you figure out some of the workings of
the iOS platform and give you deeper insight into how your application is
behaving.

Closing Thoughts
All of these debugging and inspection techniques can be useful when try-
ing to debug your own application or understand a new codebase quickly.
However, you may not always have access to the source code of the product
you’re working with. In these cases, you’ll want to know some basic black-
box testing techniques, which I will cover in Chapter 6.

Debugging with lldb and Friends 75

6
BLACK-BOX TESTING

While white-box testing is almost always the best way to
security test an application, sometimes you simply have
to do your testing without source code or insight into
a program’s design. In these cases, you’ll need to dig a
little deeper into the guts of iOS, especially into the
realm of Objective-C and the Mach-O binary format.

Black-box testing on iOS is a rapidly moving target—it relies on the
continuous development of jailbreaks, as well as robust third-party tools
and debugging implements. I’ve tried to make the techniques and tools
described in this chapter as future-proof as possible to give you a solid
foundation to build on.

To effectively black-box test an iOS application, you’ll first need to get
a jailbroken device so that you can sideload applications and install your
testing tool chain. The details of jailbreaking change too rapidly for me
to document here, but you can usually find current information from the
iPhone Dev Team1 or iClarified.2

Once you’ve jailbroken your device, launch Cydia, choose Developer
mode, and then update your package list (under Changes).

1. http://blog.iphone-dev.org/

2. http://iclarified.com/

http://blog.iphone-dev.org/
http://iclarified.com/

Now you can load your device with some testing tools, primarily from
the Cydia app store. These are the must-haves:

odcctools This includes otool, lipo, and other development goodies.

OpenSSH You’ll need this to actually access the device. Be sure to
change the passwords of your root and mobile accounts immediately using
the passwd(1) command.

MobileTerminal This will allow you to navigate the command line on
the device itself, when necessary.

cURL You’ll want this for downloading remote files over HTTP
or FTP.

Erica Utilities This includes a smattering of useful utilities from Erica
Sadun. See a detailed list at http://ericasadun.com/ftp/EricaUtilities/ .

vbindiff This is a binary diff program to help verify changes to
binaries.

netcat This is your general, all-purpose network listener.

rsync You can install this for syncing whole directory trees to and from
the device.

tcpdump You can install this for capturing network traffic dumps for
analysis.

IPA Installer Console This will allow you to directly install .ipa files
copied to the device.

Cydia Substrate This tool is used for hooking and modifying the
behavior of applications.

Now, let’s look at how you can get these testing tools onto your device.

Installing Third-Party Apps
Depending on how you’ve come to possess your application files, there are a
couple of ways to sideload them onto your device.

Using a .app Directory
If you’ve acquired a .app directory, you can do the following:

First, archive your .app bundle with tar, and use scp to copy the archive
over to your test device, as follows:

$ tar -cvzf archive.tar.gz mybundle.app}

$ scp archive.tar.gz root@dev.ice.i.p:

78 Chapter 6

http://ericasadun.com/ftp/EricaUtilities/

Then ssh to your device and untar the bundle into the /Applications
directory:

$ cd /Applications

$ tar -xvzf ~/archive.tar.gz

This should put the application right next to the official Apple-supplied
applications. To get it to show up on the home screen, you’ll need to either
restart the SpringBoard or reboot the device. To restart SpringBoard, you
can use the killall command, like this:

$ killall -HUP SpringBoard

If you find yourself needing to “respring” a lot, you can use a tool like
CCRespring from Cydia, as shown in Figure 6-1.

Figure 6-1: A simple respring
button added to the Control Center
by CCRespring

Tools like CCRespring add a button that you can press to restart the
SpringBoard so you don’t have to go to the command line every time.

NOTE Some have reported that simply respringing the device does not cause the application
to appear on the SpringBoard. In this case, you can either reboot or run the uicache

command as the mobile user.

Black-Box Testing 79

Using a .ipa Package File
If you’ve been given (or have otherwise obtained) a .ipa package file, you
can copy it to your device with scp and install it using the installipa com-
mand, as follows:

$ installipa ./Wikipedia-iOS.ipa

Analyzing Wikipedia-iOS.ipa...

Installing Wikipedia (v3.3)...

Installed Wikipedia (v3.3) successfully.

$ ls Applications/CC189021-7AD0-498F-ACB6-356C9E521962

Documents Library Wikipedia-iOS.app tmp

Decrypting Binaries
Before you can inspect the contents of binaries, you’ll need to decrypt them.
There are a couple of ways to do so. The simplest way is to use a prepack-
aged tool, such as Stefan Esser’s dumpdecrypted.3 This is a shared library
that is dynamically loaded when executing your application. You can use it
as follows:

$ git clone https://github.com/stefanesser/dumpdecrypted

$ cd dumpdecrypted

$ make

$ scp dumpdecrypted.dylib root@your.dev.ice:

$ ssh root@your.dev.ice

$ DYLD_INSERT_LIBRARIES=dumpdecrypted.dylib /var/mobile/Applications/(APP_ID)/

YourApp.app/YourApp

This will output a decrypted version of the binary within the tmp direc-
tory of the application’s .app bundle.

Because there have been many automated tools for dumping decrypted
binaries, most of which have become unusable, it’s best to have a backup
method. For a more robust and (ideally) future-proof way to decrypt bina-
ries and to help you understand some of the inner workings of application
encryption and decryption, you can use command line tools and lldb.4

To create a decrypted binary, you’ll follow these basic steps:

1. Analyze the binary to determine the location of its encrypted portion.

2. Run the application under lldb.

3. https://github.com/stefanesser/dumpdecrypted

4. Traditionally, this has been done with the GNU Debugger, gdb. However, gdb hasn’t been
included with Xcode since version 4, and most versions in Cydia are broken. This method of
using lldb should work for the foreseeable future . . . I think.

80 Chapter 6

https://github.com/stefanesser/dumpdecrypted

3. Dump the unencrypted segment to disk.

4. Copy the original binary for use as a donor file.

5. Remove the donor binary’s cryptid flag.

6. Transplant the unencrypted segment into the donor binary.

Let’s discuss this decryption process in more detail.

Launching the debugserver on the Device
Before you can get a memory dump, you need to get Apple’s debugserver
onto the device. The debugserver is in DeveloperDiskImage.dmg, buried inside
Xcode. From the command line, you can attach the disk image and extract
the debugserver to a local directory, as shown in Listing 6-1.

$ hdiutil attach /Applications/Xcode.app/Contents/Developer/Platforms/iPhoneOS.

platform/DeviceSupport/7.1\ \(11D167\)/DeveloperDiskImage.dmg

Checksumming whole disk (Apple_HFS : 0)

..

disk (Apple_HFS : 0): verified CRC32 $D1221D77

verified CRC32 $B5681BED

/dev/disk6 /Volumes/DeveloperDiskImage

$ cp /Volumes/DeveloperDiskImage/usr/bin/debugserver .

Listing 6-1: Extracting the debugserver from the Developer Disk Image

Once you’ve copied over the debugserver, you’ll need to edit the enti-
tlements of the binary. Normally, when Xcode itself uses the debugserver, it
launches applications directly; you want to change its permissions to allow it
to attach to arbitrary running programs on the device. First, generate a plist
using the current entitlements of the binary, as follows:

$ codesign --display --entitlements entitlements.plist debugserver

This should result in an XML-formatted plist file with the following
contents:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/

PropertyList-1.0.dtd">

<plist version="1.0">

<dict>

<key>com.apple.backboardd.debugapplications</key>

<true/>

<key>com.apple.backboardd.launchapplications</key>

Black-Box Testing 81

<true/>

<key>com.apple.springboard.debugapplications</key>

<true/>

<key>run-unsigned-code</key>

<true/>

<key>seatbelt-profiles</key>

<array>

<string>debugserver</string>

</array>

</dict>

</plist>

This file needs to be updated to include the get-task-allow and
task_for_pid-allow entitlements and remove the seatbelt-profiles entitle-
ment. Those updates will result in a plist like the following:

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/

PropertyList-1.0.dtd">

<plist version="1.0">

<dict>

<key>com.apple.springboard.debugapplications</key>

<true/>

<key>run-unsigned-code</key>

<true/>

<key>get-task-allow</key>

<true/>

<key>task_for_pid-allow</key>

<true/>

</dict>

</plist>

After updating the entitlements.plist file, you’d use it to sign the applica-
tion (thus overwriting the existing entitlements of the binary) and copy the
debugserver to the device, as shown here:

$ codesign -s - --entitlements entitlements.plist -f debugserver

debugserver: replacing existing signature

$ scp debugserver root@de.vi.ce.ip:

Now you can finally debug the application. Ensure that the program
you want to debug is currently running on the device and then launch the
debugserver to attach to it, like this:

$ ssh root@de.vi.ce.ip

$./debugserver *:666 --attach=Snapchat

debugserver-310.2 for arm64.

82 Chapter 6

Attaching to process Snapchat...

Listening to port 666 for a connection from *...

This example debugserver is now listening for a network connection
from another machine running lldb. Next, on your local machine, you’d
connect to the device as follows:

$ lldb

(lldb) platform select remote-ios

Platform: remote-ios

Connected: no

SDK Path: "/Users/lx/Library/Developer/Xcode/iOS DeviceSupport/8.0 (12A4265u)"

SDK Roots: [0] "/Applications/Xcode.app/Contents/Developer/Platforms/iPhoneOS.

platform/DeviceSupport/4.2"

SDK Roots: [1] "/Applications/Xcode.app/Contents/Developer/Platforms/iPhoneOS.

platform/DeviceSupport/4.3"

SDK Roots: [2] "/Applications/Xcode.app/Contents/Developer/Platforms/iPhoneOS.

platform/DeviceSupport/5.0"

SDK Roots: [3] "/Applications/Xcode.app/Contents/Developer/Platforms/iPhoneOS.

platform/DeviceSupport/5.1"

SDK Roots: [4] "/Applications/Xcode.app/Contents/Developer/Platforms/iPhoneOS.

platform/DeviceSupport/6.0"

SDK Roots: [5] "/Applications/Xcode.app/Contents/Developer/Platforms/iPhoneOS.

platform/DeviceSupport/6.1"

SDK Roots: [6] "/Applications/Xcode.app/Contents/Developer/Platforms/iPhoneOS.

platform/DeviceSupport/7.0"

SDK Roots: [7] "/Applications/Xcode.app/Contents/Developer/Platforms/iPhoneOS.

platform/DeviceSupport/7.1 (11D167)"

SDK Roots: [8] "/Users/lx/Library/Developer/Xcode/iOS DeviceSupport/5.0.1
(9A405)"

SDK Roots: [9] "/Users/lx/Library/Developer/Xcode/iOS DeviceSupport/6.0.1
(10A523)"

SDK Roots: [10] "/Users/lx/Library/Developer/Xcode/iOS DeviceSupport/7.0.4
(11B554a)"

SDK Roots: [11] "/Users/lx/Library/Developer/Xcode/iOS DeviceSupport/8.0
(12A4265u)"

SDK Roots: [12] "/Users/lx/Library/Developer/Xcode/iOS DeviceSupport/8.0
(12A4297e)"

(lldb) process connect connect://de.vi.ce.ip:666

Process 2801 stopped

* thread #1: tid = 0x18b64b, 0x0000000192905cc0 libsystem_kernel.dylib`

mach_msg_trap + 8, stop reason = signal SIGSTOP

frame #0: 0x0000000192905cc0 libsystem_kernel.dylib`mach_msg_trap + 8

libsystem_kernel.dylib`mach_msg_trap + 8:

-> 0x192905cc0: b 0x19290580c

libsystem_kernel.dylib`mach_msg_overwrite_trap:

0x192905cc4: .long 0x0000093a ; unknown opcode

Black-Box Testing 83

0x192905cc8: ldr w16, 0x192905cd0 ; semaphore_signal_trap

0x192905ccc: b 0x19290580c

In this example, the running program is now interrupted, and at this
point, you’d be free to manipulate it with lldb on your local machine. To
extract the decrypted program data, you’d next need to determine which
part of the binary the encrypted segment resides in.

Note that you may find that a network connection is too unstable to
complete the memory dump successfully. If this is the case, you can use the
iproxy command included with usbmuxd to act as a proxy between your USB
port and a TCP port, as follows:

$ brew install usbmuxd

$ iproxy 1234 1234 &

$ lldb

(lldb) process connect connect://127.0.0.1:1234

These commands connect to a network socket with lldb but actually go
over the USB port.

Locating the Encrypted Segment
To locate the encrypted segment, you’ll require odcctools and lldb. First,
run otool -l myBinary and view the output in your favorite pager. You can do
this either on the device or on your local machine. The copy included with
OS X has a more modern version of otool that will provide cleaner output.
Here’s an example:

$ otool -fh Snapchat

Fat headers

fat_magic 0xcafebabe

nfat_arch 2

architecture 0

cputype 12

cpusubtype 9

capabilities 0x0

offset 16384

size 9136464

align 2^14 (16384)

architecture 1

cputype 12

cpusubtype 11

capabilities 0x0

offset 9158656

size 9169312

align 2^14 (16384)

Snapchat (architecture armv7:

Mach header

84 Chapter 6

magic cputype cpusubtype caps filetype ncmds sizeofcmds flags

0xfeedface 12 9 0x00 2 47 5316 0x00218085

Snapchat (architecture armv7s):

Mach header

magic cputype cpusubtype caps filetype ncmds sizeofcmds flags

0xfeedface 12 11 0x00 2 47 5316 0x00218085

The Mach-O binary format allows for what are called fat files, which can
contain the program compiled for multiple architectures at once (this is
how OS X universal binaries work). To make reverse engineering easier, you
need to work with the part of the binary that will be running on your target
device; in my case, I have an iPhone 5s as a test device, so I want the armv7s
architecture.

After determining the architecture, you have a couple of options. You
could thin the binary to include only one architecture using the lipo(1)

command (the thin flag specifies which architecture you’re interested in),
like this:

$ lipo -thin armv7 myBinary -output myBinary-thin

But for the purposes of this chapter, I’ll show you how to work with a
fat binary. First, you’d use otool to determine what the base address of the
text segment of the binary is—this is where the actual executable instructions
will be loaded into memory—as in Listing 6-2.

$ otool -arch armv7s -l Snapchat

Snapchat:

Load command 0

cmd LC_SEGMENT

cmdsize 56

segname __PAGEZERO

vmaddr 0x00000000

vmsize 0x00004000

fileoff 0

filesize 0

maxprot 0x00000000

initprot 0x00000000

nsects 0

flags 0x0

Load command 1

cmd LC_SEGMENT

cmdsize 736

segname __TEXT

vmaddr 0x00004000

vmsize 0x007a4000

fileoff 0

filesize 8011776

maxprot 0x00000005

Black-Box Testing 85

initprot 0x00000005

nsects 10

flags 0x0

Listing 6-2: Finding the base address of the text segment

You can see here that the text segment starts at 0x00004000. Record
this address because you’ll need it in a bit. The next step is to determine
the beginning and end of the encrypted part of the binary. You can do this
with otool—note that you’ll want to specify the -arch armv7s command (or
whatever architecture you’re using) to ensure that you’re looking at the
right section. The output should look like Listing 6-3.

$ otool -arch armv7s -l Snapchat

--snip--

Load command 9

cmd LC_VERSION_MIN_IPHONEOS

cmdsize 16

version 5.0

sdk 7.1

Load command 10

cmd LC_UNIXTHREAD

cmdsize 84

flavor ARM_THREAD_STATE

count ARM_THREAD_STATE_COUNT

r0 0x00000000 r1 0x00000000 r2 0x00000000 r3 0x00000000

r4 0x00000000 r5 0x00000000 r6 0x00000000 r7 0x00000000

r8 0x00000000 r9 0x00000000 r10 0x00000000 r11 0x00000000

r12 0x00000000 sp 0x00000000 lr 0x00000000 pc 0x0000a300

cpsr 0x00000000

Load command 11

cmd LC_ENCRYPTION_INFO

cmdsize 20

cryptoff 16384

cryptsize 7995392

cryptid 1

Listing 6-3: otool displaying a binary’s load commands

The values of interest here are cryptoff and cryptsize (cryptid simply
indicates this is an encrypted binary).5 These indicate the address where the
encrypted segment of the application begins and the size of the segment,
respectively. The range between those two numbers will help you when
dumping memory. These values are in hexadecimal, though—a quick way
to obtain the hex values is to execute the following in the Terminal:

5. https://developer.apple.com/library/mac/#documentation/DeveloperTools/Conceptual/
MachORuntime/Reference/reference.html

86 Chapter 6

https://developer.apple.com/library/mac/#documentation/DeveloperTools/Conceptual/MachORuntime/Reference/reference.html
https://developer.apple.com/library/mac/#documentation/DeveloperTools/Conceptual/MachORuntime/Reference/reference.html

$ printf '%x\n' 16384

4000

$ printf '%x\n' 7995392

7a0000

In this case, the numbers are 0x00004000 and 0x007a0000. Write these
down, too. Now, back in Listing 6-2, it was determined that the text segment
in the binary starts at 0x00004000. However, the text segment probably
won’t end up there when the program is actually run because ASLR moves
portions of memory around at random.6 So check to see where the text
segment actually got loaded using lldb’s image list command, as follows:

(lldb) image list

[0] E3BB2396-1EF8-3EA7-BC1D-98F736A0370F 0x000b2000 /var/mobile/Applications/

CCAC51DD-48DB-4798-9D1B-94C5C700191F/Snapchat.app/Snapchat
(0x00000000000b2000)

[1] F49F2879-0AA0-36C0-8E55-73071A7E2870 0x2db90000 /Users/lx/Library/Developer/

Xcode/iOS DeviceSupport/7.0.4 (11B554a)/Symbols/System/Library/Frameworks/

AudioToolbox.framework/AudioToolbox

[2] 763DDFFB-38AF-3444-B745-01DDE37A5949 0x388ac000 /Users/lx/Library/Developer/

Xcode/iOS DeviceSupport/7.0.4 (11B554a)/Symbols/usr/lib/libresolv.9.dylib

[3] 18B3A243-F792-3C39-951C-97AB416ED3E6 0x37fb0000 /Users/lx/Library/Developer/

Xcode/iOS DeviceSupport/7.0.4 (11B554a)/Symbols/usr/lib/libc++.1.dylib

[4] BC1A8B9C-9F5D-3B9D-B79E-345D4C3A361A 0x2e7a2000 /Users/lx/Library/Developer/

Xcode/iOS DeviceSupport/7.0.4 (11B554a)/Symbols/System/Library/Frameworks/

CoreLocation.framework/CoreLocation

[5] CC733C2C-249E-3161-A9AF-19A44AEB1577 0x2d8c2000 /Users/lx/Library/Developer/

Xcode/iOS DeviceSupport/7.0.4 (11B554a)/Symbols/System/Library/Frameworks/

AddressBook.framework/AddressBook

You can see that the text segment landed at 0x000b2000. With that
address in hand, you’re finally ready to extract the executable part of the
binary.

Dumping Application Memory
Let’s look at a bit of math to figure out the final offsets. The first step is
to add the base address to the value of cryptoff; in this case, both were
0x00004000, so the starting number would be 0x00008000. The ending
number would be the starting number plus the value of cryptsize, which is
at 0x007a0000 in this example. These particular numbers are pretty easy to
add in your head, but if you get offsets you can’t figure out easily, you can
just use Python to calculate it for you, as shown in Listing 6-4.

6. Unless you disable PIE. You can do this with the removePIE tool; see https://github.com/
peterfillmore/removePIE/ .

Black-Box Testing 87

https://github.com/peterfillmore/removePIE/
https://github.com/peterfillmore/removePIE/

$ python

Python 2.7.10 (default, Dec 14 2015, 19:46:27)

[GCC 4.2.1 Compatible Apple LLVM 6.0 (clang-600.0.39)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>>

>>> hex(0x00008000 + 0x007a0000)

'0x7a8000'

Listing 6-4: Adding the starting number and the hexadecimal value of cryptsize

Now this example is seriously almost done, I promise. From here, you’d
just plug your numbers in to the following lldb command:

(lldb) memory read --force --outfile /tmp/mem.bin --binary 0x00008000 0x007a8000

8011776 bytes written to '/private/tmp/mem.bin'

This won’t give you a full, working binary, of course—just a memory
dump. The image lacks the Mach-O header metadata. To fix this, you’d
need to transplant the memory dump into a valid binary, and to that end,
you’d first make a copy of the original binary and use scp to copy it to your
development machine.

Then, you’d copy the contents of the unencrypted memory dump into
the donor binary, replacing the encrypted segment. You can use dd for this,
specifying the seek parameter where it should start writing your data. The
seek parameter should be the value of vmaddr added to cryptoff, which is
0x8000 in this case. Here’s how this example’s dd command would look:

$ dd bs=1 seek=0x8000 conv=notrunc if=/tmp/mem.bin of=Snapchat-decrypted

Next, you’d have to change the donor binary’s cryptid value to 0, indi-
cating an unencrypted binary. There are several ways to do this. You can
use MachOView7 (see Figure 6-2), which provides an easy interface for
examining and changing Mach-O binaries, or you can use a hex editor of
your choice. If you’re using a hex editor, I find it easiest to first find the
LC_ENCRYPTION_INFO command by searching for 2100 0000 1400 0000.8 The next
16 numbers will be the offset and size, followed by 0100 0000. That byte is the
cryptid; change it to 0000 0000.

Once you’ve disabled the cryptid flag, you’d need to copy the modified
binary back to the device. With the modified binary in place, you can verify
the change using vbindiff, which is available in Homebrew. Output from
vbindiff should appear as shown in Listing 6-5.

7. http://sourceforge.net/projects/machoview/

8. This is how it appears in xxd(1), which is what I usually use for quick-and-dirty editing. Your
editor may vary. If in doubt, check with MachOView first and then develop whatever scripts you
may require.

88 Chapter 6

http://sourceforge.net/projects/machoview/

Figure 6-2: The encrypted flag with MachOView

Snapchat

0000 0A80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0000 0A90: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0000 0AA0: 00 00 00 00 70 39 00 00 00 00 00 00 21 00 00 00p9..!...

¶ 0000 0AB0: 14 00 00 00 00 20 00 00 00 C0 26 01 01 00 00 00&.....

0000 0AC0: 0C 00 00 00 34 00 00 00 18 00 00 00 02 00 00 004...

0000 0AD0: 00 00 01 00 00 00 01 00 2F 75 73 72 2F 6C 69 62 /usr/lib

0000 0AE0: 2F 6C 69 62 6C 6F 63 6B 64 6F 77 6E 2E 64 79 6C /liblock down.dyl

Snapchat-decrypted

0000 0A80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0000 0A90: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0000 0AA0: 00 00 00 00 70 39 00 00 00 00 00 00 21 00 00 00p9..!...

· 0000 0AB0: 14 00 00 00 00 20 00 00 00 C0 26 01 00 00 00 00&.....

0000 0AC0: 0C 00 00 00 34 00 00 00 18 00 00 00 02 00 00 004...

0000 0AD0: 00 00 01 00 00 00 01 00 2F 75 73 72 2F 6C 69 62 /usr/lib

0000 0AE0: 2F 6C 69 62 6C 6F 63 6B 64 6F 77 6E 2E 64 79 6C /liblock down.dyl

Listing 6-5: Verifying the changed cryptid value with vbindiff

The lines at ¶ and · show the cryptid bit (in bold) enabled and dis-
abled, respectively. Now, if all has gone well, you’d be ready to start dissect-
ing the binary in earnest.

Reverse Engineering from Decrypted Binaries
Because of the rather transparent structure of the Mach-O binary format,
basic reverse engineering on iOS is a fairly trivial task—at least once you’ve
managed to obtain a decrypted binary. Several tools can help you under-
stand class definitions, examine assembly instructions, and give details on

Black-Box Testing 89

how the binary was built. The most useful and easily obtainable ones are
otool and class-dump. You’ll also take a look at Cycript and Hopper as tools
for reversing particularly stubborn applications.

Inspecting Binaries with otool
otool has long been part of the base OS X toolkit for inspecting Mach-O
binaries. Its current incarnation supports both ARM and amd64 architec-
tures and can optionally use llvm to disassemble binaries. To get a basic look
at a program’s internals, you can use otool -oV to view the data segment, as
shown in Listing 6-6.

$ otool -oV MobileMail

MobileMail:

Contents of (__DATA,__objc_classlist) section

000c2870 0xd7be8

isa 0xd7bd4

superclass 0x0

cache 0x0

vtable 0x0

data 0xc303c (struct class_ro_t *)

flags 0x0

instanceStart 80

instanceSize 232

ivarLayout 0x0

name 0xb48ac MailAppController

baseMethods 0xc3064 (struct method_list_t *)

entsize 12

count 122

name 0xa048e toolbarFixedSpaceItem

types 0xb5bb0 @8@0:4

imp 0x40c69

name 0xa04a4 sidebarQuasiSelectTintColor

types 0xb5bb0 @8@0:4

imp 0x40ccd

name 0xa04c0 sidebarMultiselectTintColor

types 0xb5bb0 @8@0:4

imp 0x40d75

name 0xa04dc sidebarTintColor

types 0xb5bb0 @8@0:4

imp 0x130f5

name 0xa04ed updateStyleOfToolbarActivityIndicatorView:
inView:

types 0xb5c34 v16@0:4@8@12

imp 0x18d69

Listing 6-6: otool displaying the contents of the __OBJC segment

90 Chapter 6

This gives you a view of class and method names, as well as information
about ivars, provided these are implemented in Objective-C rather than
straight C++. To view the text segment of a program, you can use otool -tVq.
The -q indicates that you want to use llvm as the disassembler rather than
otool’s built-in disassembler, which is noted by -Q. The differences in output
are few, but llvm seems best suited for the task, given that it likely assembled
the binary in the first place. It also provides slightly more readable output.
Listing 6-7 shows some example output of otool -tVq.

MobileMail:

(__TEXT,__text) section

00003584 0000 movs r0, r0

00003586 e59d b 0x30c4

00003588 1004 asrs r4, r0, #32

--snip--

000035ca 447a add r2, pc

000035cc 6801 ldr r1, [r0]

000035ce 6810 ldr r0, [r2]

000035d0 f0beecf0 blx 0xc1fb4 @ symbol stub for: _objc_msgSend

000035d4 f2417128 movw r1, #5928

000035d8 f2c0010d movt r1, #13

000035dc 4479 add r1, pc

000035de 6809 ldr r1, [r1]

000035e0 f0beece8 blx 0xc1fb4 @ symbol stub for: _objc_msgSend

000035e4 4606 mov r6, r0

Listing 6-7: otool’s disassembly output

Here, you see the actual disassembly of methods, as well as some basic
symbol information. To get a dump of all the symbols, use otool -IV, as
shown in Listing 6-8.

$ otool -IV MobileMail

MobileMail:

Indirect symbols for (__TEXT,__symbolstub1) 241 entries

address index name

0x000c1c30 3 _ABAddressBookFindPersonMatchingEmailAddress

0x000c1c34 4 _ABAddressBookRevert

0x000c1c38 5 _ABPersonCopyImageDataAndCropRect

0x000c1c3c 7 _CFAbsoluteTimeGetCurrent

0x000c1c40 8 _CFAbsoluteTimeGetGregorianDate

0x000c1c44 9 _CFArrayAppendValue

0x000c1c48 10 _CFArrayCreateMutable

0x000c1c4c 11 _CFArrayGetCount

Black-Box Testing 91

0x000c1c50 12 _CFArrayGetFirstIndexOfValue

0x000c1c54 13 _CFArrayGetValueAtIndex

0x000c1c58 14 _CFArrayRemoveValueAtIndex

0x000c1c5c 15 _CFArraySortValues

0x000c1c60 16 _CFDateFormatterCopyProperty

0x000c1c64 17 _CFDateFormatterCreate

Listing 6-8: Inspecting symbols with otool

Obtaining Class Information with class-dump
The class-dump9 tool is used to extract class information from Objective-C
2.0 binaries. The resulting output is essentially the equivalent of the header
files of a given binary. This can give excellent insight into the design and
structure of a program, making class-dump an invaluable tool for reverse
engineering. The original class-dump by Steve Nygard runs only on OS X
but recognizes the armv7 architecture, so you can copy files over to your
desktop for analysis. There is also a modified version, class-dump-z,10 that
can run on Linux and iOS. As of this writing, class-dump appears to be more
up-to-date and functional, so I recommend sticking with it.

You can test class-dump against any unencrypted iOS binary. The quick-
est way to get a feel for it is to copy over one of the built-in Apple apps in
/Applications and run class-dump on the binary, as shown in Listing 6-9.

$ class-dump MobileMail

--snip--

@interface MessageHeaderHeader : _AAAccountConfigChangedNotification <

MessageHeaderAddressBookClient, UIActionSheetDelegate>

{

MailMessage *_lastMessage;

id <MessageHeaderDelegate> _delegate;

UIWebBrowserView *_subjectWebView;

DOMHTMLElement *_subjectTextElement;

UILabel *_dateLabel;

unsigned int _markedAsUnread:1;

unsigned int _markedAsFlagged:1;

unsigned int _isOutgoing:1;

UIImageView *_unreadIndicator;

UIImageView *_flaggedIndicator;

WorkingPushButton *_markButton;

id _markUnreadTarget;

9. http://stevenygard.com/projects/class-dump/

10. http://code.google.com/p/networkpx/wiki/class_dump_z

92 Chapter 6

http://stevenygard.com/projects/class-dump/
http://code.google.com/p/networkpx/wiki/class_dump_z

SEL _markUnreadAction;

ABPersonIconImageView *_personIconImageView;

SeparatorLayer *_bottomSeparator;

SeparatorLayer *_topSeparator;

float _horizontalInset;

unsigned int _allowUnreadStateToBeShown:1;

}

- (id)initWithFrame:(struct CGRect)fp8;

- (void)dealloc;

Listing 6-9: class-dump Showing the Interface Details of MobileMail

Delightful, no? Once you have a decrypted binary, most Objective-C
applications become transparent pretty quickly.

Extracting Data from Running Programs with Cycript
If you don’t want to go through the hassle of decrypting a binary to get
information about its internals, you can use Cycript11 to extract some of
this information from a running executable. There are many tricks to inter-
act with running applications using Cycript, but you’ll probably be most
interested in using weak_classdump.cy12 to approximate the functionality of
class-dump. With the Contacts application running, you can extract class-
dump information thusly:

$ curl -OL https://raw.github.com/limneos/weak_classdump/master/
weak_classdump.cy

$ cycript -p Contacts weak_classdump.cy

'Added weak_classdump to "Contacts" (3229)'

$ cycript -p Contacts

cy# weak_classdump_bundle([NSBundle mainBundle],"/tmp/contactsbundle")

"Dumping bundle... Check syslog. Will play lock sound when done."

This will write out header files for each class into the /tmp/contactsbundle
directory.

Note that in order to securely fetch things with cURL, you’ll need to
install a CA certificate bundle on the device. If you use MacPorts and have
cURL installed locally, do this:

$ scp /opt/local/share/curl/curl-ca-bundle.crt \

root@de.vi.c.e:/etc/ssl/certificates/ca-certificates.crt

11. http://www.cycript.org/

12. https://github.com/limneos/weak_classdump/

Black-Box Testing 93

http://www.cycript.org/
https://github.com/limneos/weak_classdump/

Or if you use Homebrew and have the OpenSSL formula installed, you
can use this command:

$ scp /usr/local/etc/openssl/cert.pem \

root@de.vi.c.e:/etc/ssl/certificates/ca-certificates.crt}

Disassembly with Hopper
There will likely be some situations where you need to get a closer view of
a program’s actual logic, in the absence of source code. While IDA Pro13

is useful for this, it’s rather expensive. I usually use Hopper14 for disassem-
bling, decompiling, and making flow graphs during black-box testing. While
assembly language and decompiling are somewhat outside the scope of
this book, let’s take a quick look at what Hopper can show you about a pro-
gram’s logic. Looking at a basic password manager in Hopper (Figure 6-3),
you will find a method called storeSavedKeyFor:, which looks promising.

Figure 6-3: The disassembly of the storeSavedKeyFor: function

13. https://www.hex-rays.com/products/ida/

14. http://www.hopperapp.com/

94 Chapter 6

https://www.hex-rays.com/products/ida/
http://www.hopperapp.com/

If you call the decompiler (the if(b) button) on this particular section
of code, Hopper will generate pseudocode to give you an idea of actual
program flow, as shown in Figure 6-4.

Figure 6-4: Code generated by the decompiler

Notice that the PearlLogger class is being instantiated, and there’s a
reference to the username for which the current item is being stored.
var_64 shows that this username is getting passed to the logging function,
probably to the NSLog facility—this is bad, for reasons I’ll explain further
in Chapter 10. However, you can also see that the item is being stored in

Black-Box Testing 95

the Keychain with a restrictive protection attribute (kSecAttrAccessibleWhen-
UnlockedThisDeviceOnly, further detailed in Chapter 13), which is a point in
the program’s favor.

Assembly language and decompilation are broad areas, but Hop-
per gives you a great way to get started with reverse engineering via
assembly for a fairly low price. If you’d like to get started developing
your skills reading ARM assembly, check out Ray Wenderlich’s tutorial:
http://www.raywenderlich.com/37181/ios-assembly-tutorial/ .

Defeating Certificate Pinning
Certificate pinning aims to prevent a rogue CA from signing a fake (but
valid-looking) certificate for your site, with the purpose of intercepting
communications between your network endpoint and the application. This
is quite a good idea (and I’ll discuss how to implement it in Chapter 7), but
it does of course make black-box testing slightly more difficult.

My colleagues and I ran into this problem frequently enough that we
wrote a tool to help us with it: the iOS SSL Killswitch.15 The Killswitch tool
hooks requests going through the URL loading system to prevent the val-
idation of any SSL certificates, ensuring that you can run any black-box
application through your proxy regardless of whether it uses certificate
pinning.

To install the Killswitch tool, copy the precompiled .deb file to your
device and install it with the dpkg tool.

scp ios-ssl-kill-switch.deb root@192.168.1.107

ssh root@192.168.1.107

(and then, on the test device)

dpkg -i ios-ssl-kill-switch.deb

killall -HUP SpringBoard

You should then find iOS SSL Killswitch in your Settings application
(see Figure 6-5), where you can toggle it on and off.

Figure 6-5: Enabling the SSL Killswitch
tool from within the Settings application

15. https://github.com/iSECPartners/ios-ssl-kill-switch/

96 Chapter 6

http://www.raywenderlich.com/37181/ios-assembly-tutorial/
https://github.com/iSECPartners/ios-ssl-kill-switch/

Hooking with Cydia Substrate
On jailbroken devices (which you’ll be performing your black-box testing
on), you can use Cydia Substrate16 (formerly known as Mobile Substrate) to
modify the behavior of the base system to give you additional information on
your application’s activity or change application behavior. Your goals may
be to disable certain security or validation mechanisms (like the iOS SSL
Killswitch does) or to simply notify you when certain APIs are used, along
with the arguments passed to them. Cydia Substrate hooks are referred to as
tweaks.

The most user-friendly way to get started with developing Cydia Sub-
strate tweaks is to use the Theos toolkit.17 To create a new tweak, use the
nic.pl script included with Theos. Note that Theos is by default oriented
toward tweaking the behavior of the SpringBoard application in order to
customize user interface elements. For the purposes described in this book,
though, you’ll want to affect all applications, so you’d specify a Bundle filter
of com.apple.UIKit. This filter will configure Mobile/Cydia Substrate to load
your tweak in any application that links to the UIKit framework (that is,
applications displaying a user interface) but not other programs like system
daemons or command line tools.

First, you need to acquire the Link Identity Editor, ldid,18 which Theos
uses to generate the signature and entitlements for a tweak. Here’s how to
get ldid:

$ git clone git://git.saurik.com/ldid.git

$ cd ldid

$ git submodule update --init

$./make.sh

$ sudo cp ./ldid /usr/local/bin

You can then clone the Theos repo and proceed to generate a tweak
template, as follows:

$ git clone git://github.com/DHowett/theos.git ~/git/theos

$ cd /tmp && ~/git/theos/bin/nic.pl

NIC 2.0 - New Instance Creator

[1.] iphone/application

16. http://iphonedevwiki.net/ index.php/MobileSubstrate

17. http://iphonedevwiki.net/ index.php/Theos/Getting_Started

18. http://gitweb.saurik.com/ldid.git

Black-Box Testing 97

http://iphonedevwiki.net/index.php/MobileSubstrate
http://iphonedevwiki.net/index.php/Theos/Getting_Started
http://gitweb.saurik.com/ldid.git

[2.] iphone/library

[3.] iphone/preference_bundle

[4.] iphone/tool

[5.] iphone/tweak

Choose a Template (required): 5

Project Name (required): MyTweak

Package Name [com.yourcompany.mytweak]:

Author/Maintainer Name [dthiel]:

[iphone/tweak] MobileSubstrate Bundle filter [com.apple.springboard]: com.apple.

UIKit

Instantiating iphone/tweak in mytweak/...

Done.

This will create a Tweak.xm file, with all of its contents commented out
by default. Stubs are included for hooking either class methods or instance
methods, with or without arguments.

The simplest type of hook you can write is one that just logs method
calls and arguments; here’s an example that hooks two class methods of
UIPasteboard:

%hook UIPasteboard

+ (UIPasteboard *)pasteboardWithName:(NSString *)pasteboardName create:(BOOL)create

{

%log;

return %orig;

}

+ (UIPasteboard *)generalPasteboard

{

%log;

return %orig;

}

%end

This code snippet uses Logos19 directives such as %hook and %log. Logos is
a component of Theos designed to allow method-hooking code to be written
easily. However, it is possible to write a tweak with the same functionality
using only C instead.

You’ll want to provide the full method signature as well, which you can
obtain either from API documentation or from framework header files.
Once you’ve customized your tweak to your satisfaction, you can build it
using the Makefile provided by nic.pl.

19. http://iphonedevwiki.net/ index.php/Logos

98 Chapter 6

http://iphonedevwiki.net/index.php/Logos

To build a Debian package suitable for installation onto a jailbroken
device, you’ll also need to install the dpkg tool. You can do this either with
the MacPorts20 port command or with Homebrew’s21 brew command. This
example uses port:

$ sudo port install dpkg

--snip--

$ make

Bootstrapping CydiaSubstrate...

Compiling iPhoneOS CydiaSubstrate stub... default target?

Compiling native CydiaSubstrate stub...

Generating substrate.h header...

Making all for tweak MyTweak...

Preprocessing Tweak.xm...

Compiling Tweak.xm...

Linking tweak MyTweak...

Stripping MyTweak...

Signing MyTweak...

$ make package

Making all for tweak MyTweak...

make[2]: Nothing to be done for `internal-library-compile'.

Making stage for tweak MyTweak...

dpkg-deb: building package `com.yourcompany.mytweak' in `./com.yourcompany.

mytweak_0.0.1-1_iphoneos-arm.deb'.

Running these commands should result in a package that can be
installed on your iOS device. First, you’d use the scp command to copy the
file over to the device and load it manually. After that, you could simply use
dpkg -i from the command line (as shown in the following code) or set up
your own Cydia repository.22

$ dpkg -i com.yourcompany.mytweak_0.0.1-1_iphoneos-arm.deb

Selecting previously deselected package com.yourcompany.mytweak.

(Reading database ... 3551 files and directories currently installed.)

Unpacking com.yourcompany.mytweak (from com.yourcompany.mytweak_0.0.1-1_iphoneos-

arm.deb) ...

Setting up com.yourcompany.mytweak (0.0.1-1) ..

When this finishes, you can either manage the package further with the
dpkg command (removing it with dpkg -P) or manage it via Cydia, as shown in
Figure 6-6.

20. http://www.macports.org/

21. http://brew.sh/

22. http://www.saurik.com/id/7/

Black-Box Testing 99

http://www.macports.org/
http://brew.sh/
http://www.saurik.com/id/7/

Figure 6-6: Your very own tweak in the
Cydia management interface

After a tweak is installed, if you examine the system log, you’ll see the
Cydia Substrate dynamic library being loaded upon launch of all applica-
tions. You’ll also see the hooked method calls being logged by the tweak.
Here’s an example log:

May 2 14:22:08 my-iPad Maps~ipad[249]: MS:Notice: Loading: /Library/

MobileSubstrate/DynamicLibraries/MyTweak.dylib

May 2 14:22:38 lxs-iPad Maps~ipad[249]: +[<UIPasteboard: 0x3ef05408>

generalPasteboard]

There are, of course, many other things you can do with tweaks besides
logging; see the Tweak.xm file of the iOS SSL Killswitch tool for an example
of modifying method behavior, along with your own preference toggle.23

Automating Hooking with Introspy
While tweaks are useful for one-off hooking scenarios, my colleagues Alban
Diquet and Tom Daniels have used the Cydia Substrate framework to make
a tool called Intropsy24 that can help automate the hooking process for

23. https://github.com/iSECPartners/ios-ssl-kill-switch/blob/master/Tweak.xm

24. https://github.com/iSECPartners/Introspy-iOS/

100 Chapter 6

https://github.com/iSECPartners/ios-ssl-kill-switch/blob/master/Tweak.xm
https://github.com/iSECPartners/Introspy-iOS/

black-box testing without having to dig too deep in to the guts of iOS or
Cydia Substratey. Introspy uses the Cydia Substrate framework directly
(rather than via Theos) to hook security-sensitive method calls, logging their
arguments and return values in a format that can subsequently be used to
generate reports. To install Introspy, download the latest precompiled .deb
package from https://github.com/iSECPartners/Introspy-iOS/releases/ , copy it to
your device, and enter the command dpkg -i filename on the device to add
the package.

Once installed, respring the device using the following:

$ killall -HUP SpringBoard

Do the same for any application that you want to test, if it’s already run-
ning. You can now tell Introspy what applications you want to hook, along
with which API calls you’d like to record (see Figure 6-7). Once your testing
is complete, a SQLite database file will be deposited in /var/mobile if you’re
testing Apple built-in or Cydia applications, or in /User/Applications/<AppID>
if you’re testing an application that came from the App Store.

Figure 6-7: The Introspy settings screen. You can select which
applications are profiled on the Apps tab.

Black-Box Testing 101

https://github.com/iSECPartners/Introspy-iOS/releases/

To analyze this database, you’ll want to use the Introspy Analyzer,25

which will generate HTML reports of Introspy’s findings (see Figure 6-8).

Figure 6-8: The Introspy HTML report output, showing a list of findings that match the
specified signatures

If you copy this database onto your test machine, you can create a report
on the called APIs using introspy.py, as follows:

$ python ./introspy.py --outdir report mydatabase.db

Newer versions of Introspy also allow automatic copying and parsing of
the database, by specifying the IP address of the device.

$ python ./introspy.py -p ios -o outputdir -f device.ip.address

25. https://github.com/iSECPartners/Introspy-Analyzer/

102 Chapter 6

https://github.com/iSECPartners/Introspy-Analyzer/

Running Introspy will evaluate the calls against a signature database
of potentially problematic APIs, helping you track down potential areas of
interest. To cut down on noise, you can filter out specific API categories or
signature types with the --group and --sub-group flags. With Introspy installed,
enter introspy.py --help at the command line for details.

Closing Thoughts
While black-box testing poses some challenges, the development community
has gone a long way to making it feasible, and some elements of black-box
testing will help you regardless of whether you have source code. You will
now turn your primary attention back to white-box testing; in Chapter 7, I’ll
guide you through some of the most security-sensitive APIs in iOS, including
IPC mechanisms, cryptographic facilities, and the myriad ways in which data
can leak from applications unintentionally.

Black-Box Testing 103

Part III
S e c u r i t y Q u i r k s o f

t h e C o c o a A P I

7
IOS NETWORKING

Almost all applications use one or more of three
iOS network APIs. In order of abstraction, these are
the URL loading system, the Foundation NSStream
API, and the Core Foundation CFStream API. The URL
loading system is used for fetching and manipulating
data, such as network resources or files, via URLs. The
NSStream and CFStream classes are slightly lower-level methods to deal with
network connections, without going quite so low as the socket level. These
classes are used for non-HTTP-based communications, or where you need
more direct control over network behavior.

In this chapter, I’ll discuss iOS networking in detail, starting from the
high-level APIs. For most purposes, apps can stick with the higher-level APIs,
but there are some cases where you can’t quite bend those APIs to your will.
With lower-level APIs, however, there are more pitfalls to consider.

Using the iOS URL Loading System
The URL loading system can handle most network tasks an app will
need to perform. The primary method of interacting with the URL API
is by constructing an NSURLRequest object and using it to instantiate an
NSURLConnection object, along with a delegate that will receive the connec-
tion’s response. When the response is fully received, the delegate will be
sent a connection:didReceiveResponse message, with an NSURLResponse object as
the supplied parameter.1

But not everyone uses the powers of the URL loading system prop-
erly, so in this section, I’ll first show you how to spot an app that bypasses
Transport Layer Security. Then, you’ll learn how to authenticate endpoints
through certificates, avoid the dangers of open redirects, and implement
certificate pinning to limit how many certificates your app trusts.

Using Transport Layer Security Correctly
Transport Layer Security (TLS), the modern specification supplanting SSL, is
crucial to the security of almost any networked application. When used cor-
rectly, TLS both keeps the data transmitted over a connection confidential
and authenticates the remote endpoint, ensuring that the certificate pre-
sented is signed by a trusted certificate authority. By default, iOS does the
Right ThingTM and refuses to connect to any endpoint with an untrusted or
invalid certificate. But all too frequently, in applications of all kinds, mobile
and otherwise, developers explicitly disable TLS/SSL endpoint validation,
allowing the application’s traffic to be intercepted by network attackers.

In iOS, TLS can be disabled a number of ways. In the past, developers
would often use the undocumented setAllowsAnyHTTPSCertificate private
class method of NSURLRequest to easily disable verification. Apple fairly quickly
started rejecting applications that used this method, as it tends to do with
apps that use private APIs. There are, however, still obfuscation methods
that may allow the use of this API to slip past the approval process, so check
codebases to ensure that the method isn’t just called by another name.

There’s an even more disastrous way to bypass TLS validation. It will
also (probably) get your app rejected in this day and age, but it illustrates
an important point about categories. I once had a client that licensed what
should have been a fairly simple piece of third-party code and included it
in their product. Despite handling TLS correctly everywhere else in the
project, their updated version of the third-party code did not validate any
TLS connections. Apparently, the third-party vendor had implemented a
category of NSURLRequest, using the allowsAnyHTTPSCertificateForHost method
to avoid validation. The category contained only the directive return YES;,
causing all NSURLRequests to silently ignore bad certificates. The moral? Test
things, and don’t make assumptions! Also, you have to audit third-party code

1. https://developer.apple.com/DOCUMENTATION/Cocoa/Conceptual/URLLoadingSystem/
URLLoadingSystem.pdf

108 Chapter 7

https://developer.apple.com/DOCUMENTATION/Cocoa/Conceptual/URLLoadingSystem/URLLoadingSystem.pdf
https://developer.apple.com/DOCUMENTATION/Cocoa/Conceptual/URLLoadingSystem/URLLoadingSystem.pdf

along with the rest of your codebase. Mistakes might not be your fault, but
nobody is likely to care about that.

NOTE Thankfully, it’s much more difficult to make accidental TLS-disabling mistakes in
iOS 9, as it by default does not allow applications to make non-TLS connections.
Instead, developers are required to put a specific exception in the app’s Info.plist for
URLs to be accessed over plaintext HTTP. However, this won’t solve cases of willful
disabling of TLS protections.

Now, there is actually an official API to bypass TLS verification. You can
use a delegate of NSURLConnection with the NSURLConnectionDelegate protocol.2

The delegate must implement the willSendRequestForAuthenticationChallenge

method, which can then call the continueWithoutCredentialForAuthentication-

Challenge method. This is the current, up-to-date method; you may also see
older code that uses connection:canAuthenticateAgainstProtectionSpace: or
connection:didReceiveAuthenticationChallenge:. Listing 7-1 shows an example
of how you might see this done in the wild.

- (void)connection:(NSURLConnection *)connection

willSendRequestForAuthenticationChallenge:(NSURLAuthenticationChallenge *)

challenge {

NSURLProtectionSpace *space = [challenge protectionSpace];

if([[space authenticationMethod] isEqualToString:NS

URLAuthenticationMethodServerTrust]) {

NSURLCredential *cred = [NSURLCredential credentialForTrust:
[space serverTrust]];

[[challenge sender] useCredential:cred forAuthenticationChallenge:
challenge];
}

}

Listing 7-1: Sending a dummy NSURLCredential in response to the challenge

This code looks rather benign, especially since it uses the words protec-
tion, credential, authentication, and trust all over the place. What it actually
does is bypass verification of the TLS endpoint, leaving the connection
susceptible to interception.

Of course, I’m not encouraging you to actually do anything to bypass
TLS verification in your app. You shouldn’t, and you’re a bad person if you
do. These examples just show the pattern that you may see in code that you
have to examine. These patterns can be difficult to spot and understand, but
if you see code that bypasses TLS verification, be sure to change it.

2. https://developer.apple.com/library/mac/#documentation/Foundation/Reference/
NSURLConnectionDelegate_Protocol

iOS Networking 109

https://developer.apple.com/library/mac/#documentation/Foundation/Reference/NSURLConnectionDelegate_Protocol
https://developer.apple.com/library/mac/#documentation/Foundation/Reference/NSURLConnectionDelegate_Protocol

Basic Authentication with NSURLConnection
HTTP basic authentication isn’t a particularly robust authentication mech-
anism. It doesn’t support session management or password management,
and therefore, the user can’t log out or change their password without
using a separate application. But for some tasks, such as authenticating
to APIs, these issues are less important, and you still might run across this
mechanism in an app’s codebase—or be required to implement it yourself.

You can implement HTTP basic authentication using either NSURLSession

or NSURLConnection, but there are a couple of pitfalls that you’ll want to be
aware of, whether you’re writing an app or examining someone else’s code.

The simplest implementation uses the willSendRequestForAuthentication-

Challenge delegate method of NSURLConnection:

- (void)connection:(NSURLConnection *)connection

willSendRequestForAuthenticationChallenge:(NSURLAuthenticationChallenge *)

challenge {

NSString *user = @"user";

NSString *pass = @"pass";

if ([[challenge protectionSpace] receivesCredentialSecurely] == YES &&

[[[challenge protectionSpace] host] isEqualToString:@"myhost.com"]) {

NSURLCredential *credential = [NSURLCredential credentialWithUser:user password

:pass persistence:NSURLCredentialPersistenceForSession];

[[challenge sender] useCredential:credential

forAuthenticationChallenge:challenge];

}

}

The delegate is first passed an NSURLAuthenticationChallenge object. It
then creates a credential with a username and password, which can be either
provided by the user or pulled from the Keychain. Finally, the sender of the
challenge is passed the credential and challenge in return.

There are two potential problems to pay attention to when implement-
ing HTTP basic authentication in this way. First, avoid storing the username
and password within either the source code or the shared preferences. You
can use the NSURLCredentialStorage API to store user-supplied credentials
in the Keychain automatically, using sharedCredentialStorage, as shown in
Listing 7-2.

110 Chapter 7

¶ NSURLProtectionSpace *protectionSpace = [[NSURLProtectionSpace alloc] initWithHost:

@"myhost.com" port:443 protocol:@"https" realm:nil authenticationMethod:nil];

· NSURLCredential *credential = [NSURLCredential credentialWithUser:user password:

pass persistence:NSURLCredentialPersistencePermanent];

¸ [[NSURLCredentialStorage sharedCredentialStorage] setDefaultCredential:credential

forProtectionSpace:protectionSpace];

Listing 7-2: Setting the default credentials of a protection space

This simply creates a protection space ¶, which includes the host, the
port, the protocol, and optionally the HTTP authentication realm (if using
HTTP basic authentication) and the authentication method (for example,
using NTLM or another mechanism). At ·, the example creates a credential
with the username and password that it most likely received from user input.
It then sets that to the default credential for this protection space at ¸,
and the credential should be automatically stored in the Keychain. In the
future, the app this code belongs to can read credentials with the same API,
using the defaultCredentialForProtectionSpace method, as shown in Listing 7-3.

credentialStorage = [[NSURLCredentialStorage sharedCredentialStorage]

defaultCredentialForProtectionSpace:protectionSpace];

Listing 7-3: Using the default credential for a protection space

Note, however, that credentials stored in sharedCredentialStorage are
marked with the Keychain attribute kSecAttrAccessibleWhenUnlocked. If you
need stricter protections, you’ll need to manage Keychain storage yourself.
I talk more about managing the Keychain in Chapter 13.

Also, be sure to pay attention to how you specify the value of the
persistence argument when creating the credential. If you’re storing in
the Keychain using NSURLCredentialStorage, you can use either the NSURL-

CredentialPersistencePermanent or NSURLCredentialPersistenceSynchronizable

types when creating your credentials. If you’re using the authentication
for something more transient, the NSURLCredentialPersistenceNone or NSURL-

CredentialPersistenceForSession types are more appropriate. You can find
details on what each of these persistence types mean in Table 7-1.

iOS Networking 111

Table 7-1: Credential Persistence Types

Persistence type Meaning

NSURLCredentialPersistenceNone Don’t store the credential at all. Use this
only when you need to make a single
request to a protected resource.

NSURLCredentialPersistenceForSession Persist the credential for the lifetime of your
application.

NSURLCredentialPersistencePermanent Store the credential in the Keychain.

NSURLCredentialPersistenceForSession Persist the credential for the lifetime of
your application. Use this is if you need
a credential just for the time your app
remains running.

NSURLCredentialPersistencePermanent Store the credential in the Keychain. Use
this when you’ll want this credential on a
consistent basis as long as the user has the
app installed.

NSURLCredentialPersistenceSynchronizable Store the credential in the Keychain,
and allow it to be synchronized to other
devices and iCloud. Use this when you
want to have people transfer the credential
between devices and don’t have concerns
about sending the credential to a third
party like iCloud.

Implementing TLS Mutual Authentication with NSURLConnection
One of the best methods of performing client authentication is to use a
client certificate and private key; however, this is somewhat convoluted
on iOS. The basic concept is relatively simple: implement a delegate for
willSendRequestForAuthenticationChallenge (formerly didReceiveAuthentication-

Challenge), check whether the authentication method is NSURLAuthentication-

MethodClientCertificate, retrieve and load a certificate and private key, build
a credential, and use the credential for the challenge. Unfortunately, there
aren’t built-in Cocoa APIs for managing certificates, so you’ll need to muck
about with Core Foundation a fair bit, like in this basic framework:

- (void)connection:(NSURLConnection *) willSendRequestForAuthenticationChallenge:(

NSURLAuthenticationChallenge *)challenge {

if ([[[challenge protectionSpace] authenticationMethod] isEqualToString:NS

URLAuthenticationMethodClientCertificate]) {

SecIdentityRef identity;

SecTrustRef trust;

¶ extractIdentityAndTrust(somep12Data, &identity, &trust);

112 Chapter 7

SecCertificateRef certificate;

· SecIdentityCopyCertificate(identity, &certificate);

¸ const void *certificates[] = { certificate };

¹ CFArrayRef arrayOfCerts = CFArrayCreate(kCFAllocatorDefault, certificates,

1, NULL);

º NSURLCredential *cred = [NSURLCredential credentialWithIdentity:identity

certificates:(__bridge NSArray*)arrayOfCerts

persistence:NSURLCredentialPersistenceNone];

» [[challenge sender] useCredential:cred

forAuthenticationChallenge:challenge];

}

}

This example creates a SecIdentityRef and SecTrustRef so that it has des-
tinations to pass to the extractIdentityAndTrust function at ¶. This function
will extract the identity and trust information from a blob of PKCS #12 data
(file extension .p12). These archive files just store a bunch of cryptography
objects in one place.

The code then makes a SecCertificateRef into which it extracts the cer-
tificate from the identity ·. Next, it builds an array containing the one
certificate at ¸ and creates a CFArrayRef to hold that certificate at ¹. Finally,
the code creates an NSURLCredential, passing in its identity and its array of
certificates with only one element º, and presents this credential as the
answer to its challenge ».

You’ll notice some handwaving around ¶. This is because obtaining the
actual certificate p12 data can happen a few different ways. You can perform
a one-time bootstrap and fetch a newly generated certificate over a secure
channel, generate a certificate locally, read one from the filesystem, or fetch
one from the Keychain. One way to get the certificate information used in
somep12Data is by retrieving it from the filesystem, like this:

NSData *myP12Certificate = [NSData dataWithContentsOfFile:path];

CFDataRef somep12Data = (__bridge CFDataRef)myP12Certificate;

The best place to store certificates of course is the Keychain; I’ll cover
that further in Chapter 13.

Modifying Redirect Behavior
By default, NSURLConnection will follow HTTP redirects when it encounters
them. However, its behavior when this happens is, well, unusual. When the
redirect is encountered, NSURLConnection will send a request, containing the
HTTP headers as they were used in the original NSURLHttpRequest, to the
new location. Unfortunately, this also means that the current value of your
cookies for the original domain is passed to the new location. As a result,
if an attacker can get your application to visit a page on your site that accepts

iOS Networking 113

an arbitrary URL as a place to redirect to, that attacker can steal your users’
cookies, as well as any other sensitive data that your application might store
in its HTTP headers. This type of flaw is called an open redirect.

You can modify this behavior by implementing connect:willSendRequest:

redirectResponse3 on your NSURLConnectionDelegate in iOS 4.3 and older, or on
your NSURLConnectionDataDelegate in iOS 5.0 and newer.4

- (NSURLRequest *)connection:(NSURLConnection *)connection

willSendRequest:(NSURLRequest *)request

redirectResponse:(NSURLResponse *)redirectResponse

{

NSURLRequest *newRequest = request;

¶ if (![[[redirectResponse URL] host] isEqual:@"myhost.com"]) {

return newRequest;

}

else {

· newRequest = nil;

return newRequest;

}

}

At ¶, this code checks whether the domain you’re redirecting to is dif-
ferent from the name of your site. If it’s the same, it carries on as normal. If
it’s different, it modifies the request to be nil ·.

TLS Certificate Pinning
In the past several years, there have been a number of troubling develop-
ments regarding certificate authorities (CAs), the entities that vouch for the
TLS certificates that we encounter on a daily basis. Aside from the massive
number of signing authorities trusted by your average client application,
CAs have had several prominent security breaches where signing keys were
compromised or where overly permissive certificates were issued. These
breaches allow anyone in possession of the signing key to impersonate any
TLS server, meaning they can successfully and transparently read or modify
requests to the server and their responses.

To help mitigate these attacks, client applications of many types have
implemented certificate pinning. This term can refer to a number of different
techniques, but the core idea is to programmatically restrict the number of
certificates that your application will trust. You could limit trust to a single

3. https://developer.apple.com/library/ios/#documentation/cocoa/conceptual/URLLoadingSystem/
Articles/RequestChanges.html

4. https://developer.apple.com/library/ios/#documentation/Foundation/Reference/
NSURLConnectionDataDelegate_protocol/Reference/Reference.html#//apple_ref/occ/intfm/
NSURLConnectionDataDelegate/connection:willSendRequest:redirectResponse:

114 Chapter 7

https://developer.apple.com/library/ios/#documentation/cocoa/conceptual/URLLoadingSystem/Articles/RequestChanges.html
https://developer.apple.com/library/ios/#documentation/cocoa/conceptual/URLLoadingSystem/Articles/RequestChanges.html
https://developer.apple.com/library/ios/#documentation/Foundation/Reference/NSURLConnectionDataDelegate_protocol/Reference/Reference.html#//apple_ref/occ/intfm/NSURLConnectionDataDelegate/connection:willSendRequest:redirectResponse:
https://developer.apple.com/library/ios/#documentation/Foundation/Reference/NSURLConnectionDataDelegate_protocol/Reference/Reference.html#//apple_ref/occ/intfm/NSURLConnectionDataDelegate/connection:willSendRequest:redirectResponse:
https://developer.apple.com/library/ios/#documentation/Foundation/Reference/NSURLConnectionDataDelegate_protocol/Reference/Reference.html#//apple_ref/occ/intfm/NSURLConnectionDataDelegate/connection:willSendRequest:redirectResponse:

CA (that is, the one that your company uses to sign its server certificates), to
an internal root CA that you use to create your own certificates (the top of
the chain of trust), or simply to a leaf certificate (a single specific certificate
at the bottom of the chain of trust).

As part of the SSL Conservatory project, my colleague Alban Diquet has
developed some convenient wrappers that allow you to implement certificate
pinning in your application. (Learn more at https://github.com/iSECPartners/
ssl-conservatory.) You could write your own wrapper or use an existing one;
either way, a good wrapper can make pinning rather simple. For example,
here’s a look at how easy it would be to implement certificate pinning with
Alban’s wrapper:

¶ - (NSData*)loadCertificateFromFile:(NSString*)fileName {

NSString *certPath = [[NSString alloc] initWithFormat:@"%@/%@", [[NSBundle

mainBundle] bundlePath], fileName];

NSData *certData = [[NSData alloc] initWithContentsOfFile:certPath];

return certData;

}

- (void)pinThings {

NSMutableDictionary *domainsToPin = [[NSMutableDictionary alloc] init];

· NSData *myCertData = [self loadCertificateFromFile:@"myCerts.der"];

if (myCertData == nil) {

NSLog(@"Failed to load the certificates");

return;

}

¸ [domainsToPin setObject:myCertData forKey:@"myhost.com"];

¹ if ([SSLCertificatePinning loadSSLPinsFromDERCertificates:domainsToPin] != YES) {

NSLog(@"Failed to pin the certificates");

return;

}

}

At ¶, this code simply defines a method to load a certificate from a
DER-formatted file into an NSData object and calls this method at ·. If this
is successful, the code puts myCertData into an NSMutableDictionary ¸ and calls
the loadSSLPinsFromDERCertificates method of the main SSLCertificatePinning

class ¹. With these pins loaded, an app would also need to implement an
NSURLConnection delegate, as shown in Listing 7-4.

iOS Networking 115

https://github.com/iSECPartners/ssl-conservatory
https://github.com/iSECPartners/ssl-conservatory

- (void)connection:(NSURLConnection *)connection

willSendRequestForAuthenticationChallenge:(NSURLAuthenticationChallenge *)

challenge {

if([challenge.protectionSpace.authenticationMethod isEqualToString:NS

URLAuthenticationMethodServerTrust]) {

SecTrustRef serverTrust = [[challenge protectionSpace] serverTrust];

NSString *domain = [[challenge protectionSpace] host];

SecTrustResultType trustResult;

SecTrustEvaluate(serverTrust, &trustResult);

if (trustResult == kSecTrustResultUnspecified) {

// Look for a pinned public key in the server's certificate chain

if ([SSLCertificatePinning verifyPinnedCertificateForTrust:serverTrust

andDomain:domain]) {

// Found the certificate; continue connecting

[challenge.sender useCredential:[NSURLCredential credentialForTrust

:challenge.protectionSpace.serverTrust] forAuthenticationChallenge:challenge];

}

else {

// Certificate not found; cancel the connection

[[challenge sender] cancelAuthenticationChallenge: challenge];

}

}

else {

// Certificate chain validation failed; cancel the connection

[[challenge sender] cancelAuthenticationChallenge: challenge];

}

}

}

Listing 7-4: An NSURLConnection delegate to handle certificate pinning logic

This simply evaluates the certificate chain presented by a remote server
and compares it to the pinned certificates included with your application.
If a pinned certificate is found, the connection continues; if it isn’t, the
authentication challenge process is canceled.

With your delegate implemented as shown, all your uses of NSURL-
Connection should check to ensure that they are pinned to a domain
and certificate pair in your predefined list. If you’re curious, you can

116 Chapter 7

find the rest of the code to implement your own certificate pinning at
https://github.com/iSECPartners/ssl-conservatory/tree/master/ios. There’s a
fair bit of other logic involved, so I can’t show all the code here.

NOTE If you’re in a hurry, a delegate that you can just subclass is included in the SSL
Conservatory sample code.

Up to now, I’ve shown network security issues and solutions that revolve
around NSURLConnection. But as of iOS 7, NSURLSession is preferred over the
traditional NSURLConnection class. Let’s take a closer look at this API.

Using NSURLSession
The NSURLSession class is generally favored by developers because it focuses
on the use of network sessions, as opposed to NSURLConnection’s focus on
individual requests. While broadening the scope of NSURLConnection some-
what, NSURLSession also gives additional flexibility by allowing configura-
tions to be set on individual sessions rather than globally throughout the
application. Once sessions are instantiated, they are handed individual
tasks to perform, using the NSURLSessionDataTask, NSURLSessionUploadTask, and
NSURLSessionDownloadTask classes.

In this section, you’ll explore some ways to use NSURLSession, some poten-
tial security pitfalls, and some security mechanisms not provided by the older
NSURLConnection.

NSURLSession Configuration
The NSURLSessionConfiguration class encapsulates options passed to
NSURLSession objects so that you can have separate configurations for
separate types of requests. For example, you can apply different caching
and cookie policies to requests fetching data of varying sensitivity lev-
els, rather than having these policies be app-wide. To use the system
policies for NSURLSession configuration, you can use the default policy of
[NSURLSessionConfigurationdefaultConfiguration], or you can simply neglect
to specify a configuration policy and instantiate your request object with
[NSURLSessionsharedSession].

For security-sensitive requests that should leave no remnants on local
storage, the configuration method ephemeralSessionConfiguration should be
used instead. A third method, backgroundSessionConfiguration, is available
specifically for long-running upload or download tasks. This type of session
will be handed off to a system service to manage completion, even if your
application is killed or crashes.

Also, for the first time, you can specify that a connection use only
TLS version 1.2, which helps defend against attacks such as BEAST5 and

5. https://bug665814.bugzilla.mozilla.org/attachment.cgi?id=540839

iOS Networking 117

https://github.com/iSECPartners/ssl-conservatory/tree/master/ios
https://bug665814.bugzilla.mozilla.org/attachment.cgi?id=540839

CRIME,6 both of which can allow network attackers to read or tamper with
your TLS connections.

NOTE Session configurations are read-only after an NSURLSession is instantiated; policies
and configurations cannot be changed mid-session, and you cannot swap out for a
separate configuration.

Performing NSURLSession Tasks
Let’s walk through the typical flow of creating an NSURLSessionConfiguration

and assigning it a simple task, as shown in Listing 7-5.

¶ NSURLSessionConfiguration *configuration = [NSURLSessionConfiguration

ephemeralSessionConfiguration];

· [configuration setTLSMinimumSupportedProtocol = kTLSProtocol12];

¸ NSURL *url = [NSURL URLWithString:@"https://www.mycorp.com"];

NSURLRequest *request = [NSURLRequest requestWithURL:url];

¹ NSURLSession *session = [NSURLSession sessionWithConfiguration:configuration

delegate:self

delegateQueue:nil];

º NSURLSessionDataTask *task = [session dataTaskWithRequest:request

completionHandler:

^(NSData *data, NSURLResponse *response, NSError *error) {

» // Your completion handler block

}];

¼ [task resume];

Listing 7-5: Creating an ephemeral NSURLConfiguration requiring TLSv1.2

The NSURLSessionConfiguration object is instantiated at ¶, with the spec-
ification that the connection should be ephemeral. This should prevent
cached data from being written to local storage. Then, at ·, the configura-
tion also requires TLS version 1.2 since the developer controls the endpoint
and knows that it supports that version. Next, just as with NSURLConnection, an
NSURL object and an NSURLRequest object with that URL ¸ are created. With
the configuration and request created, the app can then instantiate the
session ¹ and assign a task to that session º.

6. https://docs.google.com/presentation/d/11eBmGiHbYcHR9gL5nDyZChu_-lCa2GizeuOfaLU2HOU/
edit?pli=1#slide=id.g1d134dff_1_222

118 Chapter 7

https://docs.google.com/presentation/d/11eBmGiHbYcHR9gL5nDyZChu_-lCa2GizeuOfaLU2HOU/edit?pli=1#slide=id.g1d134dff_1_222
https://docs.google.com/presentation/d/11eBmGiHbYcHR9gL5nDyZChu_-lCa2GizeuOfaLU2HOU/edit?pli=1#slide=id.g1d134dff_1_222

NSURLSessionDataTask and its siblings take a completion handler block as
an argument ». This block asynchronously handles the server response and
data you receive as a result of the task. Alternatively (or in addition), you
can specify a custom delegate conforming to the NSURLSessionTaskDelegate

protocol. One reason you may want to use both a completionHandler and a
delegate is to have the completion handler take care of the results of the
request, while the delegate manages authentication and caching decisions
on a session basis instead of a task basis (I’ll talk about this in the next
section).

Finally, at ¼, this code sets the task running with a call to its resume

method because all tasks are suspended upon creation.

Spotting NSURLSession TLS Bypasses
NSURLSession has a way to avoid TLS checks as well. Apps can just use the
didReceiveChallenge delegate and pass the proposedCredential of the challenge
received back as a credential for the session, as in Listing 7-6.

- (void)URLSession:(NSURLSession *)session didReceiveChallenge:(NS

URLAuthenticationChallenge *)challenge completionHandler:(void (^)(NS

URLSessionAuthChallengeDisposition disposition, NSURLCredential * credential))

completionHandler {

¶ completionHandler(NSURLSessionAuthChallengeUseCredential,
[challenge proposedCredential]);

}

Listing 7-6: Bypassing server verification with NSURLSession

This is another bypass that can be tricky to spot. Look for code like that
at ¶, where there’s a completionHandler followed by proposedCredential.

Basic Authentication with NSURLSession
HTTP authentication with NSURLSession is handled by the session and is
passed to the didReceiveChallenge delegate, as shown in Listing 7-7.

¶ - (void)URLSession:(NSURLSession *)session didReceiveChallenge:(NS

URLAuthenticationChallenge *)challenge completionHandler:(void (^)(NS

URLSessionAuthChallengeDisposition, NSURLCredential *))completionHandler {

NSString *user = @"user";

NSString *pass = @"pass";

NSURLProtectionSpace *space = [challenge protectionSpace];

iOS Networking 119

if ([space receivesCredentialSecurely] == YES &&

[[space host] isEqualToString:@"myhost.com"] &&

[[space authenticationMethod] isEqualToString:NS

URLAuthenticationMethodHTTPBasic]) {

· NSURLCredential *credential =

[NSURLCredential credentialWithUser:user

password:pass

persistence:NSURLCredentialPersistenceForSession];

¸ completionHandler(NSURLSessionAuthChallengeUseCredential, credential);

}

}

Listing 7-7: A sample didReceiveChallenge delegate

This approach defines a delegate and a completion handler at ¶,
creates an NSURLCredential at ·, and passes that credential to the comple-
tion handler at ¸. Note that for either the NSURLConnection or NSURLSession

approach, some developers forget to ensure that they’re talking to the cor-
rect host or sending credentials securely. This would result in credentials
getting sent to every URL your app loads, instead of just yours; Listing 7-8
shows an example of what that mistake might look like.

- (void)URLSession:(NSURLSession *)session didReceiveChallenge:(NS

URLAuthenticationChallenge *)challenge completionHandler:(void (^)(NS

URLSessionAuthChallengeDisposition, NSURLCredential *))completionHandler {

NSURLCredential *credential =

[NSURLCredential credentialWithUser:user

password:pass

persistence:NSURLCredentialPersistenceForSession];

completionHandler(NSURLSessionAuthChallengeUseCredential, credential);

}

Listing 7-8: The wrong way to do HTTP auth

If you want to use persistent credentials for a dedicated endpoint,
you can store them in sharedCredentialStorage as you did with NSURLConnec-

tion. When constructing your session, you can provide these credentials
beforehand without having to worry about a delegate method, as shown in
Listing 7-9.

NSURLSessionConfiguration *config = [NSURLSessionConfiguration

defaultSessionConfiguration];

120 Chapter 7

[config setURLCredentialStorage:

[NSURLCredentialStorage sharedCredentialStorage]];

NSURLSession *session = [NSURLSession sessionWithConfiguration:config

delegate:nil

delegateQueue:nil];

Listing 7-9: Using an NSURLSessionConfiguration to reference stored credentials

This just creates an NSURLSessionConfiguration and specifies that it should
use the shared credential storage. When you connect to a resource that has
credentials stored in the Keychain, those will be used by the session.

Managing Stored URL Credentials
You’ve seen how to store and read credentials using sharedCredentialStorage,
but the NSURLCredentialStorage API also lets you remove credentials using the
removeCredential:forProtectionSpace method. For example, you may want to
do this when a user explicitly decides to log out of an application or remove
an account. Listing 7-10 shows a typical use case.

NSURLProtectionSpace *space = [[NSURLProtectionSpace alloc]

initWithHost:@"myhost.com"

port:443

protocol:@"https"

realm:nil authenticationMethod:nil];

NSURLCredential *credential = [credentialStorage

defaultCredentialForProtectionSpace:space];

[[NSURLCredentialStorage sharedCredentialStorage] removeCredential:credential

forProtectionSpace:space];

Listing 7-10: Removing default credentials

This will delete the credentials from your local Keychain. However, if
a credential has a persistence of NSURLCredentialPersistenceSynchronizable,
the credential may have been synchronized to other devices via iCloud. To
remove the credentials from all devices, use the NSURLCredentialStorageRemove-

SynchronizableCredentials option, as shown in Listing 7-11.

NSDictionary *options = [NSDictionary dictionaryWithObjects forKeys:NS

URLCredentialStorageRemoveSynchronizableCredentials, YES];

iOS Networking 121

[[NSURLCredentialStorage sharedCredentialStorage] removeCredential:credential

forProtectionSpace:space

options:options];

Listing 7-11: Removing credentials from the local Keychain and from iCloud

At this point, you should have an understanding of the NSURLConnection

and NSURLSession APIs and their basic usage. There are other network frame-
works that you may encounter, which have their own behaviors and require
slightly different security configuration. I’ll cover a few of these now.

Risks of Third-Party Networking APIs
There are a few popular third-party networking APIs used in iOS applica-
tions, largely for simplifying various networking tasks such as multipart
uploads and certificate pinning. The most commonly used one is AFNet-
working,7 followed by the now-obsolete ASIHTTPRequest.8 In this section,
I’ll introduce you to both.

Bad and Good Uses of AFNetworking
AFNetworking is a popular library built on top of NSOperation and NSHTTP-

Request. It provides several convenience methods to interact with different
types of web APIs and perform common HTTP networking tasks.

As with other networking frameworks, one crucial task is to ensure
that TLS safety mechanisms have not been disabled. In AFNetworking,
TLS certificate validation can be disabled in a few ways. One is via the
_AFNETWORKING_ALLOW_INVALID_SSL_CERTIFICATES flag, typically set in the Prefix.pch
file. Another way is to set a property of AFHTTPClient, as in Listing 7-12.

NSURL *baseURL = [NSURL URLWithString:@"https://myhost.com"];

AFHTTPClient* client = [AFHTTPClient clientWithBaseURL:baseURL];

[client setAllowsInvalidSSLCertificate:YES];

Listing 7-12: Disabling TLS validation with setAllowsInvalidSSLCertificate

The last way you might see TLS validation being disabled is by changing
the security policy of AFHTTPRequestOperationManager with setAllowsInvalidSSL-

Certificate, as shown in Listing 7-13.

AFHTTPRequestOperationManager *manager = [AFHTTPRequestOperationManager manager];

[manager [securityPolicy setAllowInvalidCertificates:YES]];

Listing 7-13: Disabling TLS validation using securityPolicy

7. https://github.com/AFNetworking/AFNetworking

8. https://github.com/pokeb/asi-http-request

122 Chapter 7

https://github.com/AFNetworking/AFNetworking
https://github.com/pokeb/asi-http-request

You’ll also want to verify that the code you’re examining doesn’t use
the AFHTTPRequestOperationLogger class in production versions. This logger
uses NSLog on the backend to write requested URLs to the Apple System Log,
allowing them to be seen by other applications on some iOS versions.

One particularly useful feature that AFNetworking provides is the ability
to easily perform certificate pinning. You can just set the _AFNETWORKING_PIN

_SSL_CERTIFICATES_ #define in your project’s .pch file, and set the pinning
mode (defaultSSLPinningMode) property of your AFHTTPClient instance appro-
priately; the available modes are described in Table 7-2. You then put the
certificates that you want to pin to in the bundle root, as files with a .cer
extension.

Table 7-2: AFNetworking SSL Pinning Modes

Mode Meaning

AFSSLPinningModeNone Perform no certificate pinning, even if pinning is
enabled. Use for debug mode if necessary.

AFSSLPinningModePublicKey Pin to the certificate’s public key.

AFSSLPinningModeCertificate Pin to the exact certificate (or certificates) supplied. This
will require an application update if a certificate is
reissued.

As shown in sample code included with AFNetworking, you can exam-
ine URLs to determine whether they should be pinned. Just evaluate the
scheme and domain name to see whether those domains belong to you.
Listing 7-14 shows an example.

if ([[url scheme] isEqualToString:@"https"] &&

[[url host] isEqualToString:@"yourpinneddomain.com"]) {

[self setDefaultSSLPinningMode:AFSSLPinningModePublicKey];

}

else {

[self setDefaultSSLPinningMode:AFSSLPinningModeNone];

}

return self;

}

Listing 7-14: Determining whether a URL should be pinned

The else statement is not strictly necessary because not pinning is the
default, but it does provide some clarity.

Keep in mind that AFNetworking pins to all certificates provided
in the bundle, but it doesn’t check that the certificate common name
and the hostname of the network endpoint match. This is mostly an issue

iOS Networking 123

if your application pins to multiple sites with different security standards.
In other words, if your application pins to both https://funnyimages.com and
https://www.bank.com, an attacker in possession of the funnyimages.com private
key would be able to intercept communications from your application to
bank.com.

Now that you’ve had a glimpse at how you can use and abuse the
AFNetworking library, let’s move on to ASIHTTPRequest.

Unsafe Uses of ASIHTTPRequest
ASIHTTPRequest is a deprecated library similar to AFNetworking, but it’s a
bit less complete and is based on the CFNetwork API. It should not be used
for new projects, but you may find it in existing codebases where migration
has been considered too expensive. When examining these codebases, the
standard SSL validation bypass to look for is setValidatesSecureCertificate:NO.

You’ll also want to examine ASIHTTPRequestConfig.h in your project to
ensure that overly verbose logging is not enabled (see Listing 7-15).

// If defined, will use the specified function for debug logging

// Otherwise use NSLog

#ifndef ASI_DEBUG_LOG

#define ASI_DEBUG_LOG NSLog

#endif

// When set to 1, ASIHTTPRequests will print information about what a request is

doing

#ifndef DEBUG_REQUEST_STATUS

#define DEBUG_REQUEST_STATUS 0

#endif

// When set to 1, ASIFormDataRequests will print information about the request body

to the console

#ifndef DEBUG_FORM_DATA_REQUEST

#define DEBUG_FORM_DATA_REQUEST 0

#endif

// When set to 1, ASIHTTPRequests will print information about bandwidth throttling

to the console

#ifndef DEBUG_THROTTLING

#define DEBUG_THROTTLING 0

#endif

// When set to 1, ASIHTTPRequests will print information about persistent

connections to the console

#ifndef DEBUG_PERSISTENT_CONNECTIONS

#define DEBUG_PERSISTENT_CONNECTIONS 0

#endif

124 Chapter 7

// When set to 1, ASIHTTPRequests will print information about HTTP authentication

(Basic, Digest or NTLM) to the console

#ifndef DEBUG_HTTP_AUTHENTICATION

#define DEBUG_HTTP_AUTHENTICATION 0

#endif

Listing 7-15: Logging defines in ASIHTTPRequestConfig.h

If you do want to use these logging facilities, you may want to wrap them
in #ifdef DEBUG conditionals, like this:

#ifndef DEBUG_HTTP_AUTHENTICATION

#ifdef DEBUG

#define DEBUG_HTTP_AUTHENTICATION 1

#else

#define DEBUG_HTTP_AUTHENTICATION 0

#endif

#endif

This ASIHTTPRequestConfig.h file wraps the logging facilities inside
conditionals to keep this information from leaking in production builds.

Multipeer Connectivity
iOS 7 introduced Multipeer Connectivity,9 which allows nearby devices
to communicate with each other with a minimal network configuration.
Multipeer Connectivity communication can take place over Wi-Fi (either
peer-to-peer or multipeer networks) or Bluetooth personal area networks
(PANs). Bonjour is the default mechanism for browsing and advertising
available services.

Developers can use Multipeer Connectivity to perform peer-to-peer
file transfers or stream content between devices. As with any type of peer
communication, the validation of incoming data from untrusted peers is
crucial; however, there are also transport security mechanisms in place to
ensure that the data is safe from eavesdropping.

Multipeer Connectivity sessions are created with either the initWithPeer

or initWithPeer:securityIdentity:encryptionPreference: class method of the
MCSession class. The latter method allows you to require encryption, as well
as include a certificate chain to verify your device.

When specifying a value for encryptionPreference, your options are
MCEncryptionNone, MCEncryptionRequired, and MCEncryptionOptional. Note that
these are interchangeable with values of 0, 1, or 2, respectively. So while

9. https://developer.apple.com/library/prerelease/ios/documentation/MultipeerConnectivity/Reference/
MultipeerConnectivityFramework/index.html

iOS Networking 125

https://developer.apple.com/library/prerelease/ios/documentation/MultipeerConnectivity/Reference/MultipeerConnectivityFramework/index.html
https://developer.apple.com/library/prerelease/ios/documentation/MultipeerConnectivity/Reference/MultipeerConnectivityFramework/index.html

values of 0 and 1 behave how you would expect if this value were a Boolean, a
value of 2 is functionally equivalent to not having encryption at all.

It’s a good idea to require encryption unconditionally because
MCEncryptionOptional is subject to downgrade attacks. (You can find more
detail in Alban Diquet’s Black Hat talk on reversing the Multipeer Connectiv-
ity protocol.10) Listing 7-16 shows a typical invocation, creating a session and
requiring encryption.

MCPeerID *peerID = [[MCPeerID alloc] initWithDisplayName:@"my device"];

MCSession *session = [[MCSession alloc] initWithPeer:peerID

securityIdentity:nil

encryptionPreference:MCEncryptionRequired];

Listing 7-16: Creating an MCSession

When connecting to a remote device, the delegate method session:did-

ReceiveCertificate:fromPeer:certificateHandler: is called, passing in the peer’s
certificate and allowing you to specify a handler method to take specific
action based on whether the certificate was verified successfully.

NOTE If you fail to create the didReceiveCertificate delegate method or don’t implement a
certificateHandler in this delegate method, no verification of the remote endpoint will
occur, making the connection susceptible to interception by a third party.

When examining codebases using the Multipeer Connectivity API,
ensure that all instantiations of MCSession provide an identity and require
transport encryption. Sessions with any type of sensitive information should
never be instantiated simply with initWithPeer. Also ensure that the delegate
method for didReceiveCertificate exists and is implemented correctly and
that the certificateHandler behaves properly when a peer fails certificate
validation. You specifically don’t want to see something like this:

- (void) session:(MCSession *)session didReceiveCertificate:(NSArray *)certificate

fromPeer:(MCPeerID *)peerID

certificateHandler:(void (^)(BOOL accept))certificateHandler

{

certificateHandler(YES);

}

This code blindly passes a YES boolean to the handler, which you should
never, ever do.

It’s up to you to decide how you’d like to implement validation. Systems
for validation tend to be somewhat customized, but you have a couple of
basic options. You can have clients generate certificates themselves and
then trust on first use (TOFU), which just verifies that the certificate being

10. https://nabla-c0d3.github.io/blog/2014/08/20/multipeer-connectivity-follow-up/
126 Chapter 7

https://nabla-c0d3.github.io/blog/2014/08/20/multipeer-connectivity-follow-up/

presented is the same as the one shown the first time you paired with a peer.
You can also implement a server that will return the public certificates of
users when queried to centralize the management of identities. Choose a
solution that makes sense for your business model and threat model.

Lower-Level Networking with NSStream
NSStream is suitable for making non-HTTP network connections, but it can
also be used for HTTP communications with fairly little effort. For some
unfathomable reason, in the transition between OS X Cocoa and iOS Cocoa
Touch, Apple removed the method that allows an NSStream to establish a
network connection to a remote host, getStreamsToHost. So if you want to sit
around streaming things to yourself, then awesome. Otherwise, in Technical
Q&A QA1652,11 Apple describes a category that you can use to define a
roughly equivalent getStreamsToHostNamed method of NSStream.

The alternative is to use the lower-level Core Foundation CFStreamCreate-

PairWithSocketToHost function and cast the input and output CFStreams to
NSStreams, as shown in Listing 7-17.

NSInputStream *inStream;

NSOutputStream *outStream;

CFReadStreamRef readStream;

CFWriteStreamRef writeStream;

CFStreamCreatePairWithSocketToHost(NULL, (CFStringRef)@"myhost.com", 80, &

readStream, &writeStream);

inStream = (__bridge NSInputStream *)readStream;

outStream = (__bridge NSOutputStream *)writeStream;

Listing 7-17: Casting CFStreams to NSStreams

NSStreams allow users only minor control of the characteristics of the
connection, such as TCP port and TLS settings (see Listing 7-18).

NSHost *myhost = [NSHost hostWithName:[@"www.conglomco.com"]];

[NSStream getStreamsToHostNamed:myhost

port:443

inputStream:&MyInputStream

outputStream:&MyOutputStream];

¶ [MyInputStream setProperty:NSStreamSocketSecurityLevelTLSv1

forKey:NSStreamSocketSecurityLevelKey];

Listing 7-18: Opening a basic TLS connection with NSStream

11. https://developer.apple.com/library/ios/#qa/qa2009/qa1652.html
iOS Networking 127

https://developer.apple.com/library/ios/#qa/qa2009/qa1652.html

This is the typical use of an NSStream: setting a host, port, and input and
output streams. Since you don’t have a ton of control over TLS settings, the
only setting that might be screwed up is ¶, the NSStreamSocketSecurityLevel.
You should set it to NSStreamSocketSecurityLevelTLSv1 to ensure that you don’t
end up using an older, broken SSL/TLS protocol.

Even Lower-level Networking with CFStream
With CFStreams, the developer is given an unfortunate amount of control in
TLS session negotiation.12 See Table 7-3 for a number of CFStream properties
that you should look for. These controls allow developers to override or dis-
able verification of the peer’s canonical name (CN), ignore expiration dates,
allow untrusted root certificates, and totally neglect to verify the certificate
chain at all.

Table 7-3: Horrible CFStream TLS Security Constants

Constant Meaning Default

kCFStreamSSLLevel The protocol to be used for encrypt-
ing the connection.

negotiateda

kCFStreamSSLAllowsExpiredCertificates Accept expired TLS certificates. false

kCFStreamSSLAllowsExpiredRoots Accept certificates that have expired
root certificates in their certificate
chain.

false

kCFStreamSSLAllowsAnyRoot Whether a root certificate can be
used as a TLS endpoint’s certificate
(in other words, a self-signed or
unsigned certificate).

false

kCFStreamSSLValidatesCertificateChain Whether the certificate chain is
validated.

true

kCFStreamSSLPeerName Overrides the hostname compared
to that of the certificate’s CN. If
set to kCFNull, no validation is
performed.

hostname

kCFStreamSSLIsServer Whether this stream will act as a
server.

false

kCFStreamSSLCertificates An array of certificates that will be
used if kCFStreamSSLIsServer is true.

none

a. The default constant is kCFStreamSocketSecurityLevelNegotiatedSSL, which negotiates the
strongest method available from the server.

12. https://developer.apple.com/library/mac/#documentation/CoreFoundation/Reference/
CFSocketStreamRef/Reference/reference.html

128 Chapter 7

https://developer.apple.com/library/mac/#documentation/CoreFoundation/Reference/CFSocketStreamRef/Reference/reference.html
https://developer.apple.com/library/mac/#documentation/CoreFoundation/Reference/CFSocketStreamRef/Reference/reference.html

You probably shouldn’t be using these security constants at all, but if you
must use TLS CFStreams, just do it the right way. It’s simple! Provided that
you’re not creating a network server within the app itself (which is a pretty
rare usage of CFStream in an iOS app), there are two steps you should follow:

1. Set kCFStreamSSLLevel to kCFStreamSocketSecurityLevelTLSv1.

2. Don’t mess with anything else.

Closing Thoughts
You’ve looked at quite a number of ways for apps to communicate with the
outside world and the incorrect ways those things can be implemented. Let’s
now turn our attention to communication with other applications and some
of the pitfalls that can happen when shuffling data around via IPC.

iOS Networking 129

8
INTERPROCESS COMMUNICATION

Interprocess communication (IPC) on iOS is, depend-
ing on your perspective, refreshingly simple or hor-
ribly limiting. I mostly consider it to be the former.
While Android has flexible IPC mechanisms such as
Intents, Content Providers, and Binder, iOS has a
simple system based on two components: message
passing via URLs and application extensions. The
message passing helps other applications and web pages invoke your app-
lication with externally supplied parameters. Application extensions are
intended to extend the functionality of the base system, providing services
such as sharing, storage, and the ability to alter the functionality of the
Today screen or keyboard.

In this chapter, you’ll learn about the various ways you can implement
IPC on iOS, how people commonly get IPC wrong, and how to work around
some of the limitations imposed by this system without compromising user
security.

URL Schemes and the openURL Method
The official IPC mechanism available to iOS application developers is via
URL schemes, which are similar to protocol handlers such as mailto: on a
desktop system.

On iOS, developers can define a URL scheme that they want their appli-
cation to respond to, and other applications (or web pages, importantly) can
invoke the application by passing in arguments as URL parameters.

Defining URL Schemes
Custom URL schemes are described in a project’s Info.plist file. To add a new
scheme, you can use Xcode’s plist editor, shown in Figure 8-1.

Figure 8-1: Defining a URL scheme within the Xcode plist editor

First, you add the URL types key, which will create a subkey, called
Item 0. A subkey will automatically be created for the URL identifier,
which should be populated with a reverse DNS notated string such as
com.mycompany.myapp. Then, you create a new subkey of Item 0, which is the
URL Schemes key. Under Item 0, which was created under URL Schemes,
enter the scheme you want other applications to call your application by.
For example, entering mynewapp here makes it so that your application will
respond to mynewapp:// URLs.

You can also define these URL schemes manually within the plist file
using an external editor, as shown in Listing 8-1.

132 Chapter 8

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/

PropertyList-1.0.dtd">

<plist version="1.0">

<dict>

<key>CFBundleDevelopmentRegion</key>

<string>en</string>

<key>CFBundleURLTypes</key>

<array>

<dict>

<key>CFBundleURLSchemes</key>

<array>

<string>com.funco.myapp</string>

</dict>

</array>

<key>CFBundleDisplayName</key>

<string>${PRODUCT_NAME}</string>

<key>CFBundleExecutable</key>

<string>${EXECUTABLE_NAME}</string>

Listing 8-1: URL schemes as shown in the plist

The bold lines indicate the additions to the original plist after the cre-
ation of the URL scheme in Figure 8-1. Learn what’s in this file so that you
can quickly grep for the information you need when examining a new and
foreign codebase. When you’re hunting for a custom URL scheme, you
should look for the CFBundleURLSchemes key.

Once you’ve defined a URL scheme or discovered a URL scheme you
want to interact with, you’ll need to implement code to make or receive IPC
calls. Thankfully, this is fairly simple, but there are a few pitfalls to watch out
for. You’ll take a look at them now.

Sending and Receiving URL/IPC Requests
To send a message via a URL scheme, you simply create an NSURL object con-
taining an NSString representing the URL you want to call and then invoke
the openURL: method [UIApplication sharedApplication]. Here’s an example:

NSURL *myURL = [NSURL URLWithString:@"someotherapp://somestuff?someparameter=avalue

&otherparameter=anothervalue"];

[[UIApplication sharedApplication] openURL:myURL];

Keys and values for the receiving application are passed in as they
would be in an HTTP URL, using ? to indicate parameters and & to separate

Interprocess Communication 133

key-value pairs. The only exception is that there doesn’t need to be any text
before the ? because you’re not talking to a remote site.

The receiving application can then extract any component of the URL
with the standard NSURL object properties,1 such as host (somestuff in my
example), or the query (your key-value pairs).

Validating URLs and Authenticating the Sender
When the receiving application is invoked with its custom URL scheme, it
has the option to verify that it wants to open the URL to begin with, using
the application:didFinishLaunchingWithOptions: method or application:will-

FinishLaunchingWithOptions: method. Applications typically use the former,
as in Listing 8-2.

- (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:(NS

Dictionary *)launchOptions {

if ([launchOptions objectForKey:UIApplicationLaunchOptionsURLKey] != nil) {

NSURL *url = (NSURL *)[launchOptions valueForKey:UI

ApplicationLaunchOptionsURLKey];

if ([url query] != nil) {

NSString *theQuery = [[url query]

stringByReplacingPercentEscapesUsingEncoding:NSUTF8StringEncoding];

if (![self isValidQuery:theQuery]) {

return NO;

}

return YES;

}

}

}

Listing 8-2: Validating URLs within didFinishLaunchingWithOptions

If YES is returned, the openURL method will be called with the supplied
URL. In the openURL method, the data passed (if any) is parsed and openURL

makes decisions as to how the app will behave in response. The method is
also where you can make decisions based on the application that called your
app. Listing 8-3 shows what an openURL method might look like.

- (BOOL)application:(UIApplication *)application openURL:(NSURL *)url

sourceApplication:(NSString *)sourceApplication annotation:
(id)annotation {

¶ if ([sourceApplication isEqualToString:@"com.apple.mobilesafari"]) {

1. https://developer.apple.com/library/mac/documentation/Cocoa/Reference/Foundation/Classes/
NSURL_Class/index.html#//apple_ref/doc/uid/20000301-SW21

134 Chapter 8

https://developer.apple.com/library/mac/documentation/Cocoa/Reference/Foundation/Classes/NSURL_Class/index.html#//apple_ref/doc/uid/20000301-SW21
https://developer.apple.com/library/mac/documentation/Cocoa/Reference/Foundation/Classes/NSURL_Class/index.html#//apple_ref/doc/uid/20000301-SW21

NSLog(@"Loading app from Safari");

return NO; // We don't want to be called by web pages

}

else {

· NSString *theQuery = [[url query]

stringByReplacingPercentEscapesUsingEncoding:NSUTF8StringEncoding];

¸ NSArray *chunks = [theQuery componentsSeparatedByString:@"&"];

for (NSString* chunk in chunks) {

¹ NSArray *keyval = [chunk componentsSeparatedByString:@"="];

º NSString *key = [keyval objectAtIndex:0];

NSString *value = [keyval objectAtIndex:1];

» // Do something with your key and value

--snip--

return YES;

}

}

}

Listing 8-3: Parsing the data received by openURL

At ¶, the method examines the source application to see whether it
comes from the bundle ID that identifies Mobile Safari; since this applica-
tion is meant to take input only from other applications, it returns NO. If your
app is meant to be opened only by a specific application, you could restrict it
to one valid bundle ID.

At ·, the input is unescaped, in case there are URL-encoded characters
in it (such as %20 for a space). At ¸ and ¹, individual key-value pairs are
separated out and broken down further into key-value pairs. The first key-
value pair is grabbed at º, and it is parsed to inform whatever logic might be
written at ».

The parsing and validation of the actual query string will depend on
what type of data you’re receiving. If you’re expecting a numeric value,
you can also use a regular expression to ensure that the string contains
only numbers. Here’s an example of a check you might add to your openURL

method:

NSCharacterSet* notNumeric = [[NSCharacterSet decimalDigitCharacterSet] invertedSet

];

if ([value rangeOfCharacterFromSet:notDigits].location != NSNotFound) {

return NO; // We didn't get a numeric value

}

Just validate any parameters received via URL-based IPC to ensure that
they contain only the type of data you expect. If you use these parameters
to form database queries or change the content of the HTML, make extra
sure you’re sanitizing the data and integrating the content properly. I’ll talk
more about this in Chapter 12.

Interprocess Communication 135

Watch for Deprecated Validation Code
Note that you may sometimes see the deprecated (yet more sensibly
named) handleOpenURL method used in some codebases; see Listing 8-4
for an example.

- (BOOL)application:(UIApplication *)application handleOpenURL:(NSURL *)url

Listing 8-4: Deprecated method for handling received URLs

Using handleOpenURL is undesirable in many cases because the method
blindly opens any URL given to it, and it gives you no way to identify where
the URL came from. Of course, verifying the source application provides
only limited guarantees.

How Safe Is Sender Validation?
Given what I’ve discussed in this section, you may well wonder whether you
can trust the value of the sourceApplication parameter at all. Good question!
While the sender check is merely a string comparison and is not directly
cryptographic, Apple does ensure that all app IDs submitted to the App
Store are unique: first come, first served. On a jailbroken device, however,
you can’t guarantee this uniqueness, so be wary of blindly trusting a URL
just because it claims to come from a particular application.

URL Scheme Hijacking
The relatively simple system of URL scheme definition that I described
has a potential problem. What if another application tries to register your
URL scheme? In the case of Apple’s built-in applications, other applications
won’t be able to successfully register a duplicate scheme. For everyone else,
though, the resultant behavior is . . . undefined. Just ask Apple:

If more than one third-party app registers to handle the same URL
scheme, there is currently no process for determining which app
will be given that scheme.2

In other words, you face two unpleasant possibilities. First, a mali-
cious application installed before your application could register your
URL scheme and retain it after your application is installed. Or, a mali-
cious application installed after your application could successfully register
your URL scheme, effectively hijacking it from your application. Either sit-
uation can result in data intended for your application going to a malicious
third-party app. What can you do? I’ll let you know once I figure that out.

In recent versions of iOS, however, alternative mechanisms for passing
data between applications have been made available, each appropriate for

2. http://developer.apple.com/library/ios/documentation/iPhone/Conceptual/
iPhoneOSProgrammingGuide/iPhoneAppProgrammingGuide.pdf (page 99)

136 Chapter 8

http://developer.apple.com/library/ios/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/iPhoneAppProgrammingGuide.pdf
http://developer.apple.com/library/ios/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/iPhoneAppProgrammingGuide.pdf

different circumstances. These may be a better fit for your app than openURL.
Let’s look at a few of these newer methods now.

Universal Links
URL scheme hijacking is one of the reasons that Apple introduced Uni-
versal Links in iOS 9. Universal Links are a way to effectively provide
deep linking in an iOS application and integration between websites and
mobile applications. For example, imagine you’ve published an instant
messaging application called HoopChat. If a user visits a website that
has a “Message me in HoopChat!” button, this could link to a URL like
https://www.hoopchat.com/im/send/?id=356372. If the user clicks this link
and has your application installed, the link would open directly in your appli-
cation, where the app could create a new message to the person with the
user ID of 356372. If the user doesn’t have the application installed, the
same URL would be viewed in Mobile Safari, which would take you to a web-
based UI to send a message.

Behind the scenes, the way this works is that the application has an
entitlement that specifies how it handles links to particular domains, as
shown in Figure 8-2.

Figure 8-2: Enabling Universal Links under Associated Domains in Xcode

When one of these domains is visited in Mobile Safari, a file called apple
-app-site-association is downloaded from the web server. This takes the form of
a signed blob of JSON, as in Listing 8-5.

{

"applinks": {

"apps": [],

"details": {

¶ "FAFBQM3A4N.com.hoopchat.messenger": {

· "paths": ["*"]

}

}

}

}

Listing 8-5: Format of the apple-app-site-association file

Interprocess Communication 137

This file specifies the developer team ID, the bundle identifier (shown
at ¶), and the URL paths that should be handled by the app (as opposed to
the main website). In this case, all URLs should be handled by the app if it’s
installed, so the file gives a value of * at ·.

As mentioned, this blob needs to be signed; the signing key is actually
the private key to your production SSL certificate. If you have the private
and public keys to your website, your JSON file can be signed from the
command line, as shown in Listing 8-6.

openssl smime \

-sign \

-nodetach \

¶ -in "unsigned.json" \

· -out "apple-app-site-association" \

-outform DER \

¸ -inkey "private-key.pem" \

¹ -signer "certificate.pem"

Listing 8-6: Signing the apple-app-site-association file

This example uses the openssl utility, providing it with the unsigned
JSON file at ¶ and the output filename at ·. At ¸ and ¹, a key pair is
provided. If your key is protected by a passphrase, you’d enter that when
prompted, and you’d receive a valid apple-app-site-association file as the output.
This file would then be uploaded to the web root of your website, where
iOS would fetch it over HTTPS to determine whether to pass the URL to
your app. Within the application, logic as to what action your app will take
upon receiving a universal link will depend on what you implement in the
application:continueUserActivity:restorationHandler: method of your applica-
tion delegate.

This universal linking approach is preferable to custom URL handling
schemes for a few reasons. First, Universal Links isn’t subject to URL scheme
hijacking; only your website, authenticated over HTTPS, can specify what
URLs will be opened in your application, and those calls can’t be sent to a
separate bundle ID. Second, the links should work regardless of whether an
app is installed. In earlier versions of iOS, you’d just get an error saying that
the scheme isn’t recognized. With Universal Links, if the app isn’t installed,
you’ll be sent to the equivalent on the website. Finally, Universal Links pro-
vide some privacy protections by preventing applications from enumerating
what applications are present on a device. (Apps could previously use the
canOpenURL method to enumerate installed applications; with Universal Links,
no such mechanism exists.)

Now that you’ve seen how you can control interactions with your own
application, let’s take a look at some ways to more deeply integrate your
application with popular apps and services using UIActivity.

138 Chapter 8

Sharing Data with UIActivity
In iOS 6, Apple started allowing third-party applications to share infor-
mation through a set of predefined methods, such as sending data via an
email or posting to Facebook. This limited form of IPC allows developers to
implement the most basic sharing functionality. You can get an idea of the
types of data this is useful for by examining the following UIActivity types:

• UIActivityTypePostToFacebook

• UIActivityTypePostToTwitter

• UIActivityTypePostToWeibo

• UIActivityTypePostToTencentWeibo

• UIActivityTypePostToFlickr

• UIActivityTypePostToVimeo

• UIActivityTypeMessage

• UIActivityTypeMail

• UIActivityTypePrint

• UIActivityTypeCopyToPasteboard

• UIActivityTypeAssignToContact

• UIActivityTypeSaveToCameraRoll

• UIActivityTypeAddToReadingList

• UIActivityTypeAirDrop

To share via UIActivity, just create a UIActivityViewController and pass it
data such as text, a URL, an image, and so forth, as shown in Listing 8-7.

NSString *text = @"Check out this highly adequate iOS security resource";

NSURL *url = [NSURL URLWithString:@"http://nostarch.com/iossecurity/"];

UIActivityViewController *controller = [[UIActivityViewController alloc]

initWithActivityItems:@[text, url]

applicationActivities:nil];

[navigationController presentViewController:controller animated:YES completion:nil

];

Listing 8-7: Instantiating a UIActivityViewController

Here, a UIActivityViewController called controller is passed some text and
a URL. If certain modes of sharing aren’t appropriate for the data, you can
exclude them. For example, if you want to ensure that users can only mail
or print your content but not post to social networking sites, you can tell
UIActivityViewController to exclude all other known types of sharing, as in
Listing 8-8.

Interprocess Communication 139

[controller setExcludedActivityTypes:@[UIActivityTypePostToFacebook,

UIActivityTypePostToTwitter

UIActivityTypePostToWeibo

UIActivityTypePostToTencentWeibo

UIActivityTypePostToFlickr

UIActivityTypePostToVimeo

UIActivityTypeMessage

UIActivityTypeCopyToPasteboard

UIActivityTypeAssignToContact

UIActivityTypeSaveToCameraRoll

UIActivityTypeAddToReadingList

UIActivityTypeAirDrop];

Listing 8-8: Excluding certain types of sharing activities

This exclusion approach is, unfortunately, not convenient or thorough,
and any sharing types added in future versions of iOS will be included by
default. If it’s important to disable parts of the sharing UI, be sure that
you test with the most recent versions of iOS before they reach the general
public.

In addition to URL schemes and UIActivity methods, there’s one more
way to handle IPC in iOS: through extensions.

Application Extensions
In iOS 8 and later, developers can write various extensions, which behave like
specialized forms of IPC. The extensions allow you to present data to other
applications, have applications share data through your app, or alter system
behavior. Table 8-1 shows the various kinds of extension points you can code
for. An extension point defines what component of the OS the extension
will have access to and how it will need to be coded.

Table 8-1: Extension Points

Type Function

Today Manipulates widgets in the Today view of the Notification Center

Share Allows data to be sent to your app via Share buttons

Action Reads or manipulates data to be returned to the host app

Photo Provides methods to manipulate photos within the Photos app

Document Provider Allows access to a library of files

Keyboard Provides a custom keyboard

140 Chapter 8

While app extensions aren’t applications, they are required to come
bundled with an application, referred to as the containing app. Third-party
applications that use an extension (called host apps) can communicate with
the extension bundled in the containing app, but the containing app itself
does not directly talk to the extension. Apple also specifically excludes some
functions from being accessible via extensions, such as using the HealthKit
API, receiving AirDrop data, or accessing the camera or microphone.

Extensions can be implemented in many ways, and they can be treated
as applications in and of themselves. As shown in Figure 8-3, extensions are
created as their own applications within Xcode.

Figure 8-3: Adding a new extension target to a project

For this book, however, let’s home in on the most important aspects to
check from a security perspective.

Checking Whether an App Implements Extensions
First, you can easily determine whether the app you’re examining imple-
ments an extension by searching for the NSExtensionPointIdentifier inside
property lists. To search for that property, you can execute the following
command in the project’s root directory:

$ find . -name "*.plist" |xargs grep NSExtensionPointIdentifier

This greps all .plist files in the directory for NSExtensionPointIdentifier.
You can also search for the property by checking the .plist file within Xcode,
as in Figure 8-4.

Interprocess Communication 141

Figure 8-4: The Info.plist of a newly created extension, viewed in Xcode

An extension’s Info.plist file will contain the type of extension being
used, as well as optional definitions of the types of data that the extension
is designed to handle. If you find the NSExtensionPointIdentifier property
defined, you should dig in to the project and find the view controller for
the defined extension.

Restricting and Validating Shareable Data
For share and action extensions, you can define an NSExtensionActivationRule,
which contains a dictionary of data types that your application is restricted to
handling (see Figure 8-5).

Figure 8-5: Activation rules in an extension’s .plist file, viewed in Xcode

This dictionary will be evaluated to determine what data types your
extension allows and the maximum number of these items you’ll accept.
But apps aren’t limited to accepting predefined types of data; they can also
implement custom NSPredicates to define their own rules for what they’ll
accept. If this is the case, you’ll see the NSExtensionActivationRule represented
as a string rather than a numeric value.

If you know you’re dealing with predefined data types, however, keep
the following predefined activation rules in mind:

• NSExtensionActivationSupportsAttachmentsWithMaxCount

• NSExtensionActivationSupportsAttachmentsWithMinCount

• NSExtensionActivationSupportsFileWithMaxCount

142 Chapter 8

• NSExtensionActivationSupportsImageWithMaxCount

• NSExtensionActivationSupportsMovieWithMaxCount

• NSExtensionActivationSupportsText

• NSExtensionActivationSupportsWebURLWithMaxCount

• NSExtensionActivationSupportsWebPageWithMaxCount

Because extensions can often receive unknown and arbitrary kinds of
data, it’s important to ensure that your extension performs correct valida-
tion in the isContentValid method of its view controller, particularly in share
or action extensions. Examine the logic in your app’s implementation of
this method and determine whether the app is performing the necessary
validation required.

Typically, an extension will examine the NSExtensionContext (which is
passed in by the host app when it calls beginRequestWithExtensionContext), as in
Listing 8-9.

NSExtensionContext *context = [self extensionContext];

NSArray *items = [context inputItems];

Listing 8-9: Creating an array of NSExtensionItems from the NSExtensionContext

This will give an array of NSExtensionItem objects, and each object will
contain a different type of data passed in by the host app, such as images,
URLs, text, and so on. Each of these items should be examined and vali-
dated before you use them to perform actions or allow the user to post
the data.

Preventing Apps from Interacting with Extensions
Keyboard extensions have the unique characteristic that they read every
keystroke that a user enters into them. Different third-party keyboards may
have various degrees of keystroke logging to help with things such as auto-
completion or sending data to a remote web service for processing. It’s also
possible that an actively malicious keyboard could be distributed, working
as a pure keylogger. If your application accepts security-sensitive data via
the keyboard, you may want to prevent the use of third-party keyboards with
your application. You can do this with the shouldAllowExtensionPointIdentifier

delegate method, as shown in Listing 8-10.

- (BOOL)application:(UIApplication *)application

shouldAllowExtensionPointIdentifier:(NSString *)extensionPointIdentifier {

if ([extensionPointIdentifier isEqualToString:UI

ApplicationKeyboardExtensionPointIdentifier]) {

return NO;

}

Interprocess Communication 143

return YES;

}

Listing 8-10: The shouldAllowExtensionPointIdentifier delegate method

This code simply examines the value of extensionPointIdentifier and
returns NO if it matches the constant UIApplicationKeyboardExtensionPoint-
Identifier. Note that currently third-party keyboards are the only extensions
that can be disabled in this fashion.

You’ve seen the best ways to implement IPC, so to close the chapter,
I’ll walk you through one approach to IPC that you may see in the wild that
doesn’t work out so well.

A Failed IPC Hack: The Pasteboard
There have been occasional reports of people abusing the UIPasteboard mech-
anism as a kind of IPC channel. For example, some try using it to transfer
a user’s data from a free version of an application to a “pro” version, since
there’s no way the newly installed application can read the old application’s
data. Don’t do that!

An OAuth library designed to work with Twitter3 uses the general paste-
board as a mechanism to shuffle authentication information from a web view
to the main part of the app, as in this example:

- (void) pasteboardChanged: (NSNotification *) note {

¶ UIPasteboard *pb = [UIPasteboard generalPasteboard];

if ([note.userInfo objectForKey:UIPasteboardChangedTypesAddedKey] == nil)

return;

NSString *copied = pb.string;

if (copied.length != 7 || !copied.oauthtwitter_isNumeric) return;

· [self gotPin:copied];

}

After reading data from the general pasteboard at ¶, this library vali-
dates the data and sends it to the gotPin method at ·.

But the general pasteboard is shared among all applications and can be
read by any process on the device. This makes the pasteboard a particularly
bad place to store anything even resembling private data. I’ll go into more
detail on the pasteboard in Chapter 10, but for now, ensure that the app
you’re examining isn’t putting anything on the pasteboard that you wouldn’t
want every other app to know about.

3. https://github.com/bengottlieb/Twitter-OAuth-iPhone

144 Chapter 8

https://github.com/bengottlieb/Twitter-OAuth-iPhone

Closing Thoughts
While IPC in iOS appears limited at first, there are ample opportunities
for developers to fail to parse externally supplied input, create new data
leaks, and even potentially send data to the wrong app. Ensure that sharing
is appropriately limited, received data is validated, sending applications
are verified, and unencrypted data isn’t passed by simply trusting that the
receiving URL handler is the one you would expect.

Interprocess Communication 145

9
IOS-TARGETED WEB APPS

Since the introduction of third-party developer APIs
for iOS, the Web has been an important component
of iOS applications. Originally, the APIs were entirely
web-based. While this potentially made life easier for
people with no Objective-C or Cocoa experience, it
severely limited what non-Apple applications could do and relegated them
to a second-class status. They had no access to native capabilities of the
phone, such as geolocation, and were available only within the browser
instead of on the home screen.

While things have changed drastically since that time, the need to inte-
grate with web applications from iOS has not. In this chapter, you’ll take
a closer look at the connections between native iOS applications and web
applications: how web applications are interacted with, what native iOS APIs
can be exposed to web apps, and the risks of various approaches.

Using (and Abusing) UIWebViews
Developers use web views to render and interact with web content in iOS
applications because they are simple to implement and provide browser-like
functionality. Most web views are instances of the UIWebView class, which uses

the WebKit rendering engine1 to display web content. Web views are often
used either to abstract portions of the application so they can be shared
between different mobile app platforms or simply to offload more logic
to the web application, often because of more in-house expertise in web
application programming than iOS. They’re also frequently used as a way to
view links to third-party web content without having to leave the application
and spawn Safari. For example, when you click an article in a Facebook feed,
the content is rendered in the Facebook app.

Starting with iOS 8, the WKWebView framework was introduced. This frame-
work gives developers some additional flexibility as well as access to Apple’s
high-performance Nitro JavaScript engine, which increases the performance
of apps that use web views significantly. Since you’ll be seeing UIWebView for
some time to come, you’ll examine both APIs in this chapter, beginning with
UIWebView.

Working with UIWebViews
Web views shift some portion of the application logic to a remote web API
or application. As such, developers have less control over the behavior of
web views than a fully native iOS application would allow, but there are a few
controls you can put in place to bend web views to your will.

By implementing the shouldStartLoadWithRequest method of the protocol
UIWebViewDelegate,2 you can make decisions about all the URLs opened via
web views before actually allowing them to be opened. For example, to limit
the attack surface, you can limit all requests so that they go only to HTTPS
URLs or only to particular domains. If you want to ensure that your appli-
cation will never load non-HTTPS URLs, you can do something like the
example shown in Listing 9-1.

- (BOOL)webView:(UIWebView*)webView shouldStartLoadWithRequest:(NSURLRequest*)

request

navigationType:(UIWebViewNavigationType)navigationType {

NSURL *url = [request URL];

¶ if ([[url scheme] isEqualToString:@"https"]) {

if ([url host] != nil) {

NSString *goodHost = @"happy.fluffy.bunnies.com";

· if ([[url host] isEqualToString:goodHost]) {

return YES;

}

1. https://www.webkit.org/

2. http://developer.apple.com/library/ios/documentation/uikit/reference/UIWebViewDelegate_Protocol/
Reference/Reference.html

148 Chapter 9

https://www.webkit.org/
http://developer.apple.com/library/ios/documentation/uikit/reference/UIWebViewDelegate_Protocol/Reference/Reference.html
http://developer.apple.com/library/ios/documentation/uikit/reference/UIWebViewDelegate_Protocol/Reference/Reference.html

}

}

return NO;

}

Listing 9-1: Rejecting non-HTTPS URLs and unknown hostnames

This example uses two different attributes of the NSURL associated
with the NSURLRequest being loaded. At ¶, the scheme property of the URL is
checked to see whether it matches the specified scheme, https. At ·, the host

property is compared to a single whitelisted domain: happy.fluffy.bunnies.com.
These two restrictions limit the application’s web views access to only your
domain—rather than anything that might be attacker-controlled—and
ensure that requests are always transmitted over HTTPS, keeping their
contents safe from network attackers.

Web views may seem like the way to go because you can reuse codebases
across platforms and still have some level of control over the local system.
However, web views do have some serious security implications. One limi-
tation is the inability to upgrade the WebKit binary shipped with UIWebView.
WebKit is prepackaged with new versions of iOS and does not get updated
out-of-band from the main OS. This means that any WebKit vulnerabilities
that are discovered remain exploitable until a new version of iOS is released.

Another major part of using web views securely involves handling your
cached data properly, which I’ll discuss in the next section.

Executing JavaScript in UIWebViews
The web view JavaScript engine is known as JavaScriptCore, also marketed
as Nitro by Apple. While the new WKWebView class improves JavaScript support
(see “Enter WKWebView” on page 158), the implementation of JavaScript-
Core as used in UIWebView has a couple of shortcomings when compared with
JavaScript engines in modern browsers. The main limitation is the lack of
just-in-time (JIT) compilation.

UIWebView JavaScript execution also limits total allocations to 10MB
and runtime to 10 seconds, at which point execution will be immedi-
ately and unequivocally halted. Despite these shortcomings, applica-
tions can execute a limited amount of JavaScript by passing the script to
stringByEvaluatingJavaScriptFromString, as illustrated in Listing 9-2.

[webView stringByEvaluatingJavaScriptFromString:@"var elem =

document.createElement('script');"

"elem.type = 'text/javascript';"

"elem.text = 'aUselessFunc(name) {"

" alert('Ohai!'+name);"

"};"

iOS-Targeted Web Apps 149

"document.getElementById('head').appendChild(elem);"];

[webView stringByEvaluatingJavaScriptFromString:@"aUselessFunc('Mitch');"];

Listing 9-2: Injecting JavaScript into the web view

The stringByEvaluatingJavaScriptFromString method takes a single argu-
ment, which is a blob of JavaScript, to insert into the view. Here, the element
elem is created, a simple function to spawn an alert box is defined, and the
function is inserted into the web view. Now, the newly defined function can
be called with subsequent calls to stringByEvaluatingJavaScriptFromString.

Do note, however, that allowing dynamic JavaScript execution within
your apps exposes your users to the JavaScript injection attacks. As such, this
functionality should be used judiciously, and developers should never reflect
untrusted input into dynamically generated scripts.

You’ll learn more about JavaScriptCore in the next section, where I
discuss ways to get around the UIWebView shortcomings I’ve described so far.

Rewards and Risks of JavaScript-Cocoa Bridges
To overcome the limitations of UIWebView, various workarounds have been
used to expose more native functionality to web-based applications. For
example, the Cordova development framework uses a clever (or dangerous)
web view implementation to access Cocoa APIs that allow the use of the
camera, accelerometer, geolocation capabilities, address book, and more.

In this section, I’ll introduce you to some popular JavaScript-Cocoa
bridges, provide examples of how you’d see them used in the wild, and
discuss some security risks they pose.

Interfacing Apps with JavaScriptCore
Prior to iOS 7, [UIWebView stringByEvaluatingJavaScriptFromString:] was the
only way to invoke JavaScript from inside an application. However, iOS 7
shipped with the JavaScriptCore framework, which has full support for bridg-
ing communications between native Objective-C and a JavaScript runtime.
The bridge is created via the new JSContext global object, which provides
access to a JavaScript virtual machine for evaluating code. The Objective-C
runtime can also obtain strong references to JavaScript values via JSValue

objects.
You can use JavaScriptCore to interface with the JavaScript runtime

in two fundamental ways: by using inline blocks or by directly exposing
Objective-C objects with the JSExport protocol. I’ll briefly cover how both
methods work and then discuss security concerns introduced by this new
attack surface.

Directly Exposing Objective-C Blocks
One use of Objective-C blocks is to provide a simple mechanism to expose
Objective-C code to JavaScript. When you expose an Objective-C block to

150 Chapter 9

JavaScript, the framework automatically wraps it with a callable JavaScript
function, which allows you to then call the Objective-C code directly from
JavaScript. Let’s look at an example—albeit a contrived one—in Listing 9-3.

JSContext *context = [[JSContext alloc] init];

¶ context[@"shasum"] = ^(NSString *data, NSString *salt) {

const char *cSalt = [salt cStringUsingEncoding:NSUTF8StringEncoding];

const char *cData = [data cStringUsingEncoding:NSUTF8StringEncoding];

unsigned char digest[CC_SHA256_DIGEST_LENGTH];

CCHmac(kCCHmacAlgSHA256, cSalt, strlen(cSalt), cData, strlen(cData),

digest);

NSMutableString *hash = [NSMutableString stringWithCapacity:

CC_SHA256_DIGEST_LENGTH];

for (int i = 0; i < CC_SHA256_DIGEST_LENGTH; i++) {

[hash appendFormat:@"%02x", digest[i]];

}

return hash;

};

Listing 9-3: Exposing an Objective-C block to JavaScript

Here, a block (you can see it defined by the ^ operator at ¶) is exposed
that accepts a password and a salt from JavaScript and uses the Common-
Crypto framework to create a hash. This block can then be accessed directly
from JavaScript to create the user’s password hash, as shown in Listing 9-4.

var password = document.getElementById('password');

var salt = document.getElementById('salt');

var pwhash = shasum(password, salt);

Listing 9-4: JavaScript call to exposed Objective-C block

This technique lets you utilize the Cocoa Touch APIs and avoid re-
implementing difficult and easily botched operations such as encryption
or hashing.

Blocks are the simplest way to expose Objective-C code to JavaScript,
but they have a few drawbacks. For instance, all the bridged objects are
immutable, so changing the value of an Objective-C variable won’t affect
the JavaScript variable that it is mapped to. However, if you do need to share
objects between both execution contexts, you can also expose custom classes
using the JSExport protocol.

Connecting Objective-C and JavaScript with JSExport
The JSExport protocol allows applications to expose entire Objective-C classes
and instances to JavaScript and operate on them as if they were JavaScript
objects. Additionally, the references to their Objective-C counterparts

iOS-Targeted Web Apps 151

are strong, meaning modifications to an object in one environment are
reflected in the other. Defining variables and methods within a protocol
that inherits JSExport signals to JavaScriptCore that those elements can be
accessed from JavaScript, as illustrated in Listing 9-5.

@protocol UserExports <JSExport>

//exported variables

@property NSString *name;

@property NSString *address;

//exported functions

- (NSString *) updateUser:(NSDictionary *)info;

@end

Listing 9-5: Exposing variables and methods using a whitelist approach

Thanks to that JSExport protocol declaration, JavaScript has access to
the variables name and address and the function updateUser. Apple has made
exposing such objects to JavaScriptCore extremely easy, which means it
can also be extremely easy for developers to inadvertently expose all kinds
of unintended functionality. Luckily, this bridge follows an entirely opt-in
model: only members you actually define in the protocol itself are exposed.
Unless explicitly whitelisted in the protocol definition, any additional decla-
rations made in the class interface are hidden, as in Listing 9-6.

@interface User : NSObject <UserExports> ¶

// non-exported variable

@property NSString *password;

// non-exported method declaration

- (BOOL) resetPassword;

@end

Listing 9-6: Elements declared outside the protocol definition are inacessible in JavaScript

The User interface inherits from UserExports at ¶, so it also inherits from
JSExport. But the password property and the resetPassword method aren’t
declared inside UserExports, so they won’t be exposed to JavaScript.

Now that JavaScriptCore knows about your UserExports protocol, it can
create an appropriate wrapper object when you add an instance of it to a
JSContext, as in the next listing:

¶ JSContext *context = [[JSContext alloc] init];

· User *user= [[User alloc] init];

152 Chapter 9

[user setName:@"Winston Furchill"];

[user setValue:24011965];

[user setHiddenName:@"Enigma"];

¸ context[@"user"] = user;

¹ JSValue val = [context evaluateScript:@"user.value"];

º JSValue val = [context evaluateScript:@"user.hiddenName"];

NSLog(@"value: %d", [val toInt32]); // => 23011965

NSLog(@"hiddenName: %@", [val toString]); // => undefined

Here, a JSContext is set up at ¶, an instance of a User class is set up at ·,
and some values are assigned to three of the new user’s properties. One of
those properties, hiddenName, was defined only in the @implementation instead
of the protocol—the same thing that happened in Listing 9-6 with the
password property. At ¸, the newly created user is bridged to the JSContext.
When the code subsequently tries to access the values of the user object from
JavaScript, the value property is successfully accessed at ¹, while the attempt
to access hiddenName fails º.

NOTE Use discretion when exporting objects to JavaScriptCore. An attacker who exploits a
script injection flaw will be able to run any exported functions, essentially turning
the script injection into native remote code execution on users’ devices.

One additional interesting point is that JavaScriptCore disallows calling
exported class constructors. (This is a bug in iOS that, as of iOS 8, has yet
to be resolved.) So even if you add [User class] to your context, you won’t be
able to create new objects using new. As I discovered through some testing,
however, it’s possible to work around that limitation. You can essentially
implement an exported Objective-C block that accepts a class name and
then creates and returns an instance of an arbitrary class to JavaScript, as I’ve
done here:

self.context[@"newInstance"] = ^(NSString *className) {

Class clazz = NSClassFromString(className);

id inst = [clazz alloc];

return inst;

};

[self.context evaluateScript:@"var u = newInstance('User');"];

JSValue *val = self.context[@"u"];

User *user = [val toObject];

NSLog(@"%@", [user class]); // => User

This technique bypasses the need to explicitly export any classes and
allows you to instantiate an object of any type and expose it to JavaScript-
Core. However, no members have been whitelisted to be exported, so there
are no strong references to any methods or variables of the class object.
Clearly, there’s plenty of room for more security research into bypassing

iOS-Targeted Web Apps 153

the restrictions implemented by JavaScriptCore because the Objective-C
runtime is such a dynamic and powerful beast.

One common complaint about the JavaScriptCore framework is that
there is no documented way to access the JSContext of a UIWebView. I’ll discuss
some potential ways around this next.

Manipulating JavaScript in Web Views
Why expose this JSContext functionality without a way to access it within a
web view? It’s not clear what Apple’s intentions were, but the developers
did only half the job of documenting the JavaScriptCore APIs. As of yet,
there’s no official Apple way to manipulate a UIWebView’s JSContext, but several
people have discovered methods to do so. Most of them involve using the
valueForKeyPath method, as in Listing 9-7.

- (void)webViewDidFinishLoad:(UIWebView *)webView {

JSContext *context = [webView valueForKeyPath:@"documentView.webView.

mainFrame.javaScriptContext"];

context[@"document"][@"cookie"] = @"hello, I'm messing with cookies";

}

Listing 9-7: Manipulating a DOM via Objective-C

Since this isn’t an officially Apple-sanctioned approach, there’s no
guarantee that this kind of code will make it into the App Store, but it’s
worth being aware of the ways developers may try to communicate between
JavaScript and Objective-C and the pitfalls it poses.

Of course, the JSContext isn’t the only way to connect JavaScript to
Objective-C. I describe Cordova, another popular bridge, in the next
section.

Executing JavaScript with Cordova
Cordova (known as PhoneGap before Adobe acquired the development firm
Nitobi) is an SDK that provides native mobile APIs to a web view’s JavaScript
execution environment in a platform-agnostic manner. This allows mobile
applications to be developed like standard web applications using HTML,
CSS, and JavaScript. Those applications then work across all platforms Cor-
dova supports. This can significantly reduce lead time and do away with the
need for development firms to hire platform-specific engineers, but Cor-
dova’s implementation increases the application attack surface significantly.

154 Chapter 9

How Cordova Works
Cordova bridges JavaScript and Objective-C by implementing an NSURLProtocol

to handle any JavaScript-initiated XmlHttpRequest to file://!gap_exec. If the
native Cordova library detects a call to this URI, it attempts to pull class,
method, argument, and callback information out of the request headers,
as evidenced in Listing 9-8.

+ (BOOL)canInitWithRequest:(NSURLRequest*)theRequest {

NSURL* theUrl = [theRequest URL];

CDVViewController* viewController = viewControllerForRequest(theRequest);

if ([[theUrl absoluteString] hasPrefix:kCDVAssetsLibraryPrefixs]) {

return YES;

} else if (viewController != nil) {

¶ if ([[theUrl path] isEqualToString:@"/!gap_exec"]) {

· NSString* queuedCommandsJSON = [theRequest valueForHTTPHeaderField:@"

cmds"];

NSString* requestId = [theRequest valueForHTTPHeaderField:@"rc"];

if (requestId == nil) {

NSLog(@"!cordova request missing rc header");

return NO;

}

BOOL hasCmds = [queuedCommandsJSON length] > 0;

if (hasCmds) {

SEL sel = @selector(enqueCommandBatch:);

¸ [viewController.commandQueue performSelectorOnMainThread:sel

withObject:queuedCommandsJSON waitUntilDone:NO];

Listing 9-8: Detecting native library calls in CDVURLProtocol.m3

At ¶, the request URL is checked for a path component of /!gap_exec,
and at ·, the value of the cmds HTTP header is extracted. Cordova then
passes these commands to the command queue ¸, where they will be exe-
cuted if possible. When these commands are queued, Cordova looks up the
information in a map of available Cordova plug-ins, which essentially just
expose various portions of the native functionality and can be extended
arbitrarily. If a particular plug-in is enabled and the class in the request can
be instantiated, then the method is called with the supplied arguments using
the all-powerful objc_msgSend.

When the call completes, the native code calls back to the JavaScript
runtime via [UIWebView stringByEvaluatingJavaScriptFromString], calling the
cordova.require('cordova/exec').nativeCallback method defined in cordova.js,
and provides the original callback ID as well as the return value of the native
code execution.

3. https://github.com/apache/cordova-ios/blob/master/CordovaLib/Classes/Public/CDVURLProtocol.m

iOS-Targeted Web Apps 155

https://github.com/apache/cordova-ios/blob/master/CordovaLib/Classes/Public/CDVURLProtocol.m

This exports an unprecedented amount of native object control to the
JavaScript runtime, allowing applications to read and write files, read and
write Keychain storage, upload local files to a remote server via FTP, and so
on. But with this increased functionality comes potential pitfalls.

Risks of Using Cordova
If your app contains any script injection vulnerabilities and if your users
can influence application navigation, an attacker could obtain remote code
execution. They would just have to inject callback functions combined with
a call to initiate communication with native code. For instance, an attacker
might inject a call to access Keychain items, grab a copy of all the user’s
contacts, or read out a file and feed it into a JavaScript function of their
choosing, as demonstrated in Listing 9-9.

<script type="text/javascript">

var exec = cordova.require('cordova/exec');

function callback(msg) {

console.log(msg);

}

exec(callback, callback, "File", "readAsText", ["/private/var/mobile/Library/

Preferences/com.apple.MobileSMS.plist", "UTF-8",

0, 2048]);

</script>

Listing 9-9: Using Cordova to make Objective-C calls to read the contents of a file

This attacker-supplied JavaScript reads the device’s com.apple.MobileSMS
.plist, which, in iOS 8, is accessible to all applications on the device.4 This
gives the attacker the ability to examine the user’s contacts, as well as deter-
mine the owner of the device in question.

One reasonable bit of built-in security that can significantly reduce the
risks of script injection is domain whitelisting.5 Cordova’s default security pol-
icy blocks all network access and allows interaction only with domains that
are whitelisted under the <access> element in the app configuration. The
whitelist does allow access to all domains via a wildcard (*) entry, but don’t
be lazy—ensure that only the domains your app needs to talk to in order
to function properly are in the whitelist. You can configure this through
Xcode by adding values to the ExternalHosts key in Cordova.plist, as shown in
Figure 9-1.

4. http://www.andreas-kurtz.de/2014/09/malicious-apps-ios8.html

5. http://docs.phonegap.com/en/1.9.0/guide_whitelist_index.md.html

156 Chapter 9

http://www.andreas-kurtz.de/2014/09/malicious-apps-ios8.html
http://docs.phonegap.com/en/1.9.0/guide_whitelist_index.md.html

Figure 9-1: Whitelisting domains in Cordova using the ExternalHosts key

Besides exposing native code objects to the web view, there are many
other drawbacks to implementing mobile applications using a web platform
wrapper such as Cordova. Mainly, each mobile platform has its own security
model predicated on specific assumptions, APIs, and functionality to protect
users and secure local storage. One platform’s security model just won’t
make sense on other platforms. Providing a one-size-fits-all implementation
is, necessarily, going to exclude some of these platform-specific security
benefits for the sake of usability.

For example, iOS provides secure storage through the Data Protection
APIs (as I describe in Chapter 13), which require specific arguments that
don’t lend themselves to a cross-platform implementation. As such, these
APIs are not supported by Cordova, preventing fine-grained control over
when file data is encrypted at rest. To solve this problem, you can enable
entitlement-level data protection (refer to “The DataProtectionClass Entitle-
ment” on page 223), which will apply a default protection level ubiquitously
for all data written to disk by the application.

Another common issue is the lack of a similar secure storage element
across platforms. This removes direct Keychain access on iOS, although
Adobe ultimately developed an open source plug-in6 to address the
problem.

That ends the tour of UIWebView and JavaScript bridges, but new applica-
tions (for iOS 8 and newer) will increasingly be using the WKWebView API. I’ll
cover how to wrangle WKWebView in the following section.

6. https://github.com/shazron/KeychainPlugin

iOS-Targeted Web Apps 157

https://github.com/shazron/KeychainPlugin

Enter WKWebView
As I mentioned previously, a newer interface to WebKit was introduced with
iOS 8 to supplant UIWebView. WKWebView addresses several of the shortcomings
of UIWebView, including access to the Nitro JavaScript engine, which greatly
increases performance on JavaScript-heavy tasks. Let’s look at how apps
would create WKWebViews and how WKWebViews can improve your app’s security.

Working with WKWebViews
A WKWebView is instantiated in essentially the same way as a UIWebView, as
shown here:

CGRect webFrame = CGRectMake(0, 0, width, height);

WKWebViewConfiguration *conf = [[WKWebViewConfiguration alloc] init];

WKWebView *webView =[[WKWebView alloc] initWithFrame:webFrame

configuration:conf];

NSURL *url = [NSURL URLWithString:@"http://www.nostarch.com"];

NSURLRequest *request = [NSURLRequest requestWithURL:url];

[webView loadRequest:request];

This just allocates a new WKWebView instance and then initializes it with the
initWithFrame method.

To customize behavior, WKWebViews can also be instantiated with user-
supplied JavaScript, as in Listing 9-10. This allows you to load a third-party
website but with your own custom JavaScript that executes upon page load.

CGRect webFrame = CGRectMake(0, 0, width, height);

¶ NSString *src = @"alert('Welcome to my WKWebView!')";

· WKWebViewConfiguration *conf = [[WKWebViewConfiguration alloc] init];

¸ WKUserScript *script = [[WKUserScript alloc] initWithSource:src

injectionTime:WKUserScriptInjectionTimeAtDocumentStart

forMainFrameOnly:YES];

¹ WKUserContentController *controller = [[WKUserContentController alloc] init];

º [conf setUserContentController:controller];

» [controller addUserScript:script];

¼ WKWebView *webView =[[WKWebView alloc] initWithFrame:webFrame

configuration:conf];

Listing 9-10: Instantiating a WKWebView with custom JavaScript

At ¶, a simple NSString that consists of a single JavaScript command
is created. At ·, a configuration object is created that will hold the con-
figuration parameters for the web view that will be created later. At ¸, a
WKUserScript object is created and initialized with the src that contains the
JavaScript you want to execute. Then a WKUserContentController is made at ¹,

158 Chapter 9

which is set in the configuration object at º. Finally, the script is added
to the controller with the addUserScript method at », and the web view is
instantiated at ¼.

NOTE As with other methods of injecting JavaScript, be careful not to interpolate content
provided by third parties without strict sanitization.

Security Benefits of WKWebViews
Using WKWebViews has a couple security advantages. First, you can set prefer-
ences that disable loading JavaScript with the method setJavaScriptEnabled

if the pages you plan to load don’t require it; if the remote site has mali-
cious script, this will prevent that script from executing. You can also leave
JavaScript enabled but disable the opening of new windows from JavaScript
using the setJavaScriptCanOpenWindowsAutomatically method—this will prevent
most pop-ups from opening, which can be quite irritating in web views.

Lastly, and perhaps most importantly, you can actually detect whether
the contents of the web view were loaded over HTTPS, giving you the ability
to ensure that no parts of the page were loaded over insecure channels. For
UIWebViews, there is no indication to the user or developer when the web view
loads mixed content—the hasOnlySecureContent method of WKWebView resolves
this problem. Listing 9-11 shows a way to implement a somewhat hardened
WKWebView.

@interface ViewController ()

@property (strong, nonatomic) WKWebView *webView;

@end

@implementation ViewController

- (void)viewDidLoad {

[super viewDidLoad];

¶ WKPreferences *pref = [[WKPreferences alloc] init];

[pref setJavaScriptEnabled:NO];

[pref setJavaScriptCanOpenWindowsAutomatically:NO];

· WKWebViewConfiguration *conf = [[WKWebViewConfiguration alloc] init];

[conf setPreferences:pref];

¸ NSURL *myURL = [NSURL URLWithString:@"https://people.mozilla.org/~mkelly/

mixed_test.html"];

¹ _webView = [[WKWebView alloc] initWithFrame:[[self view] frame]

configuration:conf];

[_webView setNavigationDelegate:self];

º [_webView loadRequest:[NSURLRequest requestWithURL:myURL]];

iOS-Targeted Web Apps 159

[[self view] addSubview:_webView];

}

» - (void)webView:(WKWebView *)webView didFinishNavigation:(WKNavigation *)navigation

{

if (![webView hasOnlySecureContent]) {

NSString *title = @"Ack! Mixed content!";

NSString *message = @"Not all content on this page was loaded securely.";

UIAlertView *alert = [[UIAlertView alloc] initWithTitle:title

message:message

delegate:self

cancelButtonTitle:@"OK"

otherButtonTitles:nil];

[alert show];

}

}

Listing 9-11: A nice, safe WKWebView

This code uses a couple of extra security mechanisms that WKWebView
provides. At ¶, a WKPreferences instance is instantiated, and the setJavaScript-

Enabled and setJavaScriptCanOpenWindowsAutomatically properties are set on
it. (These are redundant, of course, but you can pick whichever property
best suits your needs.) Then, a WKWebViewConfiguration object is instantiated
at · and the WKPreferences already created are passed in. At ¸, a URL to
load is defined; in this case, it’s simply an example page that includes mixed
content. At ¹, the WKWebView itself is made, using the configuration created
previously. The code then requests that the web view load a given URL at º.
Finally, the didFinishNavigation delegate is implemented at », which in turn
calls hasOnlySecureContent on the web view. If the content is mixed, the user is
alerted.

Closing Thoughts
While modern versions of iOS have made great strides in allowing devel-
opers control over the interactions between native code and web content,
there is a legacy of hacks to bridge the two, with their own idiosyncrasies. At
this point, you should be aware of the main bridging mechanisms, as well as
where to look for potentially malicious externally supplied data.

I also briefly covered some of the caching that takes place when working
with web content. In Chapter 10, you’ll dig in to the many ways that data can
leak to the local filesystem and be recovered by attackers.

160 Chapter 9

10
DATA LEAKAGE

Data theft is a serious concern in the mobile world,
where devices containing critical personal and busi-
ness data are lost or stolen frequently. The primary
threat to consider here is forensic attackers, so use
special care to ensure that such data is persisted in
a format that can’t be easily extracted by physical attackers or by compro-
mised devices. Unfortunately, there’s a lot of confusion over what APIs
actually end up storing sensitive data, which is understandable since much
of this behavior is undocumented.

In this chapter, I’ll examine the many ways in which data can leak from
your application to dark corners of the device—and even accidentally be
synced to remote services such as iCloud. You’ll learn how to search for
leaked data on a device or within your own Simulator application directory
structure, as well as how to prevent these kinds of leaks from happening.

The Truth About NSLog and the Apple System Log
For years developers have used printf to output basic debug information
while writing programs. In iOS, NSLog appears to be the equivalent, and it’s
frequently used as such. However, NSLog doesn’t merely write output to the

Xcode console, as most people believe. Its purpose is to log an error mes-
sage to the Apple System Log (ASL) facility. Here’s what Apple has to say:

Messages received by the server are saved in a data store (subject
to input filtering constraints). This API permits clients to create
queries and search the message data store for matching messages.1

So perhaps NSLog is best thought of as a hybrid between printf and syslog,
which spits out messages in the Xcode console when debugging and sends
messages to a global system log when on the device. It follows, then, that
data logged by NSLog will be retrievable by anyone in physical possession of
the device, similar to other cached application data.

No special tools are necessary to read the log. Just plug the iOS device in
to a Mac, open Xcode, select Window → Devices, and click your device. The
device’s system log may not be initially visible in the console. If it isn’t, click
the tiny arrow in the lower left of the panel. Figure 10-1 shows an example of
viewing the console log with the Devices window.

Figure 10-1: The Devices window in Xcode

The Apple System Log facility has one quirk that makes it different from
the traditional UNIX syslog facility: you can create queries to search existing
data in the ASL. In versions of iOS before iOS 7, this function works regard-
less of which application originally submitted the data, which means that

1. https://developer.apple.com/library/ios/#documentation/System/Conceptual/ManPages_iPhoneOS/
man3/asl.3.html

162 Chapter 10

https://developer.apple.com/library/ios/#documentation/System/Conceptual/ManPages_iPhoneOS/man3/asl.3.html
https://developer.apple.com/library/ios/#documentation/System/Conceptual/ManPages_iPhoneOS/man3/asl.3.html

any information an application logs can be read by any other application
on the device. Any application can read the ASL programmatically, too, as
Oliver Drobnik describes on the Cocoanetics blog.2 In fact, there are several
applications that act as system log viewers using this API.

In iOS 7 and later, the impact of this flaw has lessened significantly
because apps can access only their own logs. However, all application logs
can still be read with physical access to a device, provided that the device has
a trust relationship with another computer (or that the attacker jailbreaks
the device).

Since log information can leak under certain circumstances, you need to
be painstakingly careful to ensure that sensitive information doesn’t end up
in the system log. For example, I’ve seen applications containing code like
the horrible snippet in Listing 10-1.

NSLog(@"Sending username \%@ and password \%@", myName, myPass);

Listing 10-1: Please don’t do this.

If you’re sending usernames, passwords, and so on, to NSLog, you’re basi-
cally handing over users’ private information, and you should feel bad about
that. To redeem yourself, stop abusing NSLog; take it out of the equation
before releasing your app to users.

Disabling NSLog in Release Builds
The simplest way to get rid of NSLog output is to use a variadic macro (List-
ing 10-2) that makes NSLog a no-op unless the app is built in Debug mode
within Xcode.

#ifdef DEBUG

define NSLog(...) NSLog(__VA_ARGS__);

#else

define NSLog(...)

#endif

Listing 10-2: Disabling NSLog in nondebug builds

As bad as NSLog seems, apps with NSLog do make it into the App Store.
This may change at some point, but you can’t rely on Apple to detect that
your application is logging information that you don’t intend, nor can you
rely on Apple to prevent applications from reading that logged data.

2. http://www.cocoanetics.com/2011/03/accessing-the-ios-system-log/

Data Leakage 163

http://www.cocoanetics.com/2011/03/accessing-the-ios-system-log/

Logging with Breakpoint Actions Instead
Another option is to use breakpoint actions to do logging, as I touched on in
Chapter 5. In that case, you’re effectively logging with the debugger, rather
than the program itself. This is more convenient in some circumstances
and doesn’t result in data being written to the system log when deployed,
reducing the risk of releasing code with logging enabled to zero. Knowing
how to use these actions will also be useful to you in future debugging.

Breakpoint actions are stored within a project, rather than in the source
itself. They’re also user specific, so you see only the breakpoints and logging
actions that you care about, rather than having everyone on your team
clutter up the codebase with their logging statements. But when needed,
Xcode lets you share your breakpoints with other users, making them part of
the main project (see Figure 10-2).

You can also easily enable or disable actions, as well as specify that they
shouldn’t output until the breakpoint is hit a certain number of times. You
can even specify complex breakpoint conditions, which define when the
associated actions will execute.

If you want to disable all the breakpoints in a project, you can do this a
couple of ways in Xcode. Either go the breakpoint navigator and right-click
the workspace icon (Figure 10-2) or use the shortcut -Y.

Figure 10-2: Sharing breakpoints with other users and disabling all breakpoints in Xcode

While NSLog leaks information to disk where it can be read by a physical
attacker (and malicious apps in some versions of iOS), data can also leak
between apps via more transient mechanisms, such as iOS pasteboards. Let’s
take a look at them now.

How Sensitive Data Leaks Through Pasteboards
The iOS pasteboard is a flexible mechanism for sharing arbitrary data within
or between applications. Via a pasteboard, you can share textual data or

164 Chapter 10

serialized objects between applications, with the option to persist these
pasteboards on disk.

Restriction-Free System Pasteboards
There are two default system pasteboards: UIPasteboardNameGeneral and
UIPasteboardNameFind. The former is the pasteboard that almost every appli-
cation will read from and write to by default when using Cut, Copy, or Paste
menu items from within the app, and it’s the pasteboard of choice when you
want to share data between third-party applications. The latter is a special
pasteboard that stores the contents of the last search string entered into a
UISearchBar, so applications can automatically determine what users have
searched for in other applications.

NOTE Contrary to the official description of UIPasteboardNameFind, this pasteboard is never
used in real life. This bug is acknowledged by Apple but hasn’t been fixed, nor has the
documentation been updated. As a security consultant, I can only hope that it will be
fixed so that I can complain about it being a security flaw.

It’s important to remember that the system pasteboards have no
access controls or restrictions. If your application stores something on
the pasteboard, any application has access to read, delete, or tamper with
that data. This tampering can come from processes running in the back-
ground, polling pasteboard contents periodically to harvest sensitive data
(see Osamu Noguchi’s UIPasteBoardSniffer3 for a demonstration of this
technique). As such, you need to be extremely careful about what ends up
on UIPasteboardNameGeneral in particular, as well as pasteboards in general.

The Risks of Custom-Named Pasteboards
Custom-named pasteboards are sometimes referred to as private pasteboards,
which is an unfortunate misnomer. While applications can create their own
pasteboards for internal use or to share among other specific applications,
custom pasteboards are public in versions of iOS prior to 7, making them
available for any program to use so long as their names are known.

Custom pasteboards are created with pasteboardWithName, and in iOS 7
and later, both pasteboardWithName and pasteboardWithUniqueName are specific to
all applications within an application group. If other applications outside of
this group attempt to create a pasteboard with a name already in use, they’ll
be assigned a totally separate pasteboard. Note, however, that the two system
pasteboards are still accessible by any application. Given that a number of
devices can’t be upgraded to iOS 6, much less iOS 7, you should carefully
examine how custom pasteboards are used in different versions of iOS.

One thing that you can do with a custom pasteboard is mark it as per-
sistent across reboots by setting the persistent property to YES. This will
cause pasteboard contents to be written to $SIMPATH/Devices/<device ID>/

3. https://github.com/Atrac613/UIPasteboardSniffer-iOS

Data Leakage 165

https://github.com/Atrac613/UIPasteboardSniffer-iOS

data/Library/Caches/com.apple.UIKit.pboard/pasteboardDB, along with other
application pasteboards. Listing 10-3 shows some data you might see in the
pasteboardDB file.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/

PropertyList-1.0.dtd">

<plist version="1.0">

<array>

<integer>1</integer>

<dict>

<key>bundle</key>

<string>com.apple.UIKit.pboard</string>

<key>items</key>

<array/>

<key>itemsunderlock</key>

<array/>

<key>name</key>

<string>com.apple.UIKit.pboard.find</string>

<key>persistent</key>

<true/>

</dict>

--snip--

<dict>

<key>bundle</key>

<string>com.apple.UIKit.pboard</string>

<key>items</key>

<array>

<dict>

<key>Apple Web Archive pasteboard type</key>

<data>

bigbase64encodedblob==

</data>

<key>public.text</key>

<data>

aHR0cDovL2J1cnAvY2VydA==

</data>

</dict>

</array>

<key>itemsunderlock</key>

<array/>

<key>name</key>

<string>com.apple.UIKit.pboard.general</string>

<key>persistent</key>

<true/>

166 Chapter 10

</dict>

</array>

</plist>

Listing 10-3: Possible contents of the com.apple.UIKit.pboard/pasteboardDB file

The base64 blobs bigbase64encodedblob (too big to include in its entirety)
and aHR0cDovL2J1cnAvY2VydA hold pasteboard contents, leaving those contents
accessible to any application that can read pasteboardDB. Note, too, that
pasteboards can be of different types: the Apple Web Archive pasteboard
allows an entire web page to be stored, while the public.text pasteboard is
the text content of the general pasteboard.4

Pasteboard Data Protection Strategies
To minimize the risk of information leakage, it’s a good idea to analyze
exactly what behavior you’re trying to facilitate by using pasteboards. Here
are some questions to ask yourself:

• Do I want users to copy information into other applications, or will they
simply need to move data within my application?

• How long should clipboard data live?

• Is there any place in the application that data should never be
copied from?

• Is there any part of the application that should never receive pasted data?

The answers to these questions will inform the way you should handle
pasteboard data within your application. You can take a few different
approaches to minimize data leakage.

Wiping the Pasteboard When You Switch Apps
If you want your users to copy and paste only within your own applica-
tion, you can clear the pasteboard on the appropriate events to ensure
that data doesn’t stay on the pasteboard when the user switches applica-
tions. To do this, clear the pasteboard by setting pasteBoard.items = nil on
the applicationDidEnterBackground and applicationWillTerminate events. This
won’t prevent applications running in the background from reading the
pasteboard, but it will shorten the lifetime of the data on the pasteboard
and will prevent users from pasting data into apps they’re not supposed to.

Keep in mind that clearing the pasteboard may interfere with data the
end user or other applications are using for a different purpose. You may
want to create a flag that indicates whether potentially sensitive data has
been written to the pasteboard and clear it only conditionally.

4. https://developer.apple.com/library/mac/documentation/Cocoa/Reference/WebKit/Classes/
WebArchive_Class/Reference/Reference.html

Data Leakage 167

https://developer.apple.com/library/mac/documentation/Cocoa/Reference/WebKit/Classes/WebArchive_Class/Reference/Reference.html
https://developer.apple.com/library/mac/documentation/Cocoa/Reference/WebKit/Classes/WebArchive_Class/Reference/Reference.html

Preventing Copy/Paste Selectively
Even when you do want to let the user copy and paste, sometimes there are
specific places you want to disallow the option. For example, you might
want to prevent a user from pasting in a PIN or answer to a security question
(such data should never be on the pasteboard in the first place) yet allow the
ability to paste in an email address from an email.

NOTE That’s not to say you should use security questions, which tend to enable account
hijacking by using publicly available information as an authenticator. You’ll take a
look at this in “Keylogging and the Autocorrection Database” on page 175.

The official way to allow users to paste some information and prevent
them from pasting others is with the canPerformAction:withSender responder
method.5 Create a new class in Xcode, as in Figure 10-3.

Figure 10-3: Creating the restrictedUITextField subclass

Then, edit restrictedUITextField.m and add the canPerformAction method.

#import "restrictedUITextField.h"

@implementation restrictedUITextField

- (id)initWithFrame:(CGRect)frame {

self = [super initWithFrame:frame];

if (self) {

// Initialization code

}

return self;

}

¶ -(BOOL)canPerformAction:(SEL)action withSender:(id)sender {

· if (action == @selector(cut:) || action == @selector(copy:))

return NO;

else

return YES;

}

@end

Listing 10-4: Adding canPerformAction to restrictedUITextField.m

5. http://developer.apple.com/library/ios/#documentation/uikit/reference/UIResponder_Class/Reference/
Reference.html168 Chapter 10

http://developer.apple.com/library/ios/#documentation/uikit/reference/UIResponder_Class/Reference/Reference.html
http://developer.apple.com/library/ios/#documentation/uikit/reference/UIResponder_Class/Reference/Reference.html

The canPerformAction method at ¶ is passed an action selector, which can
be inspected to see what type of action is being requested at ·. You can use
any method from those specified in the UIResponderStandardEditActions pro-
tocol. If you want to entirely disable the context menu, you can, of course,
simply return NO in every circumstance.

Finding and Plugging HTTP Cache Leaks
You’ll also find cached data from the URL loading system stored, unen-
crypted, in the <app ID>/Library/Caches/com.mycompany.myapp/Cache.db* files,
which are private to each application. HTTP caches can contain images,
URLs, and text fetched over HTTP and can therefore expose sensitive
data to a third party if examined. An easy way to get an idea of the type
of data exposed by your application is to use File Juicer to carve the database
into normal, readable individual files. You can download File Juicer at
http://echoone.com/filejuicer/ , and Figure 10-4 shows the type of output it
provides.

Figure 10-4: Examining the contents of the cache databases, split into separate files and
directories by File Juicer

File Juicer splits data into directories based on particular file types, so
you can investigate stored images, plists, SQLite databases, or plaintext
conversions of other binary file types.

Once you know what kind of data your application exposes through
cached data, you can consider how best to manage it.

Data Leakage 169

http://echoone.com/filejuicer/

Cache Management
Cache management on iOS is somewhat complex. There are many config-
uration settings and a seemingly endless number of ways to affect cache
policy. On top of that, the platform tries to aggressively cache and copy
everything it can get its hands on to try to improve the user experience.
Developers need to determine which of these methods allows for secure
cache management, but it’s easy to lull yourself into a false sense of security.
Pentesters have to know when clients who think they are doing the right
things are in fact leaking potentially sensitive information onto disk. Let’s
talk about all the wrong ways to manage caches.

As I mentioned in Chapter 5, the documented way to remove cached
data, [NSURLCache removeAllCachedResponses], only removes cache entries from
memory. This is essentially useless for security purposes because the same
information is persisted to disk and is not removed. Perhaps there’s a better
approach.

Ideally, you won’t ever need to delete the cache because removal implies
that you were caching responses in the first place. If the response data is so
sensitive, then why not just never cache it? Let’s give that a shot.

The first place to start limiting cached responses is in the NSURLCache

configuration, as in Listing 10-5. This API lets you control the amount of
memory and disk capacity that the platform dedicates to the cache.

NSURLCache *urlCache = [[NSURLCache alloc] init];

[urlCache setDiskCapacity:0];

[NSURLCache setSharedURLCache:urlCache];

Listing 10-5: Limiting disk cache storage to zero bytes

The problem with this strategy is that the capacity manipulation APIs
are not intended to be security mechanisms. Rather, these configurations
exist to provide the system with information to be used when memory or
disk space runs low. The NSURLCache documentation6 specifies that both the
on-disk and in-memory caches will be truncated to the configured sizes only
if necessary.

So you can’t trust configuring the cache capacity. What about setting
the cache policy to NSURLRequestReloadIgnoringLocalCacheData to force the URL
loading system to ignore any cached responses and fetch the data anew?
Here’s how that might work:

NSURLRequest* req = [NSURLRequest requestWithURL:aURL

cachePolicy:NSURLRequestReloadIgnoringLocalCacheData

timeoutInterval:666.0];

[myWebView loadRequest:req];

6. https://developer.apple.com/library/ios/documentation/cocoa/reference/foundation/Classes/
NSURLCache_Class/Reference/Reference.html#//apple_ref/occ/instm/NSURLCache/setDiskCapacity:

170 Chapter 10

https://developer.apple.com/library/ios/documentation/cocoa/reference/foundation/Classes/NSURLCache_Class/Reference/Reference.html#//apple_ref/occ/instm/NSURLCache/setDiskCapacity:
https://developer.apple.com/library/ios/documentation/cocoa/reference/foundation/Classes/NSURLCache_Class/Reference/Reference.html#//apple_ref/occ/instm/NSURLCache/setDiskCapacity:

But this policy is not implicitly preventing responses from being
cached; it’s preventing the URL loading system only from retrieving the
cached responses on subsequent fetches. Any previously cached responses
will persist on disk, which poses problems if your initial app implementations
allowed caching. No dice.

As I’ve tried to demonstrate, if you rely on the system defaults for web
view cache management, you might just implement a lot of precautions that
don’t really protect users at all. If you want to reliably control the contents of
your application caches, you need to do it yourself. Luckily, this isn’t actually
that difficult.

The Cocoa Touch API gives developers the ability to manipulate responses
on a per-request basis before they are cached using the [NSURLConnection

connection:willCacheResponse:] method. If you don’t want to cache the data,
you can implement the delegate method, as shown in Listing 10-6.

-(NSCachedURLResponse *)connection:(NSURLConnection *)connection

willCacheResponse:(NSCachedURLResponse *)cachedResponse {

NSCachedURLResponse *newCachedResponse = cachedResponse;

if ([[[[cachedResponse response] URL] scheme] isEqual:@"https"]) {

newCachedResponse=nil;

}

return newCachedResponse;

}

Listing 10-6: Preventing caching of responses served over secure connections

This implementation of the delegate just returns NULL instead of the
NSCachedURLResponse representation of the response data.

Similarly, for data fetched using the NSURLSession class, you’d implement
the [NSURLSessionDataDelegate URLSession:dataTask:willCacheResponse:completion-

Handler:] delegate method. Beware of relying entirely on this method, how-
ever, because it is called only for data and upload tasks. Caching behavior
for download tasks will still be determined by the cache policy only and
should be resolved similarly to Listing 10-6.7

In summary, caching on iOS is unreliable. Be careful, and double-check
your app after extended use to make sure it’s not leaving sensitive informa-
tion around.

Solutions for Removing Cached Data
The documented way to remove locally cached data is to use the
removeAllCachedResponses method of the shared URL cache, shown in
Listing 10-7.

7. https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/URLLoadingSystem/
Concepts/CachePolicies.html#//apple_ref/doc/uid/20001843-BAJEAIEE

Data Leakage 171

https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/URLLoadingSystem/Concepts/CachePolicies.html#//apple_ref/doc/uid/20001843-BAJEAIEE
https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/URLLoadingSystem/Concepts/CachePolicies.html#//apple_ref/doc/uid/20001843-BAJEAIEE

[[NSURLCache sharedURLCache] removeAllCachedResponses];

Listing 10-7: The documented API for removing cached data

A similar method, removeCachedResponseForRequest, exists to remove cached
data for only specific sites. However, as you discovered in Chapter 4, this
removes only cached data from memory and not from the disk cache that
you’re actually concerned with. I would file a bug, if Apple’s bug tracking
system were not an infinitely hot and dense dot from which no light or infor-
mation could escape.8 Anyway, there are a few ways you can work around
this—the caching issue, I mean; you’re on your own if you’re unfortunate
enough to have to report a bug.

Just Don’t Cache
In most circumstances, it’s better to just prevent caching altogether, rather
than clean up piecemeal afterward. You can proactively set the cache capac-
ities for disk and memory to zero (Listing 10-8), or you can simply disable
caching for the disk, if you’re comfortable with in-RAM caching.

- (void)applicationDidFinishLaunching:(UIApplication *)application {

[[NSURLCache sharedURLCache] setDiskCapacity:0];

[[NSURLCache sharedURLCache] setMemoryCapacity:0];

// other init code

}

Listing 10-8: Disallowing cache storage by limiting permitted storage space

Alternatively, you can implement a willCacheResponse delegate method of
NSURLConnection, returning a value of nil, as in Listing 10-9.

-(NSCachedURLResponse *)connection:(NSURLConnection *)connection

willCacheResponse:(NSCachedURLResponse *)cachedResponse {

NSCachedURLResponse *newCachedResponse=cachedResponse;

¶ if ([cachedResponse response]) {

· newCachedResponse=nil;

}

return newCachedResponse;

}

Listing 10-9: Sample cache discarding code

8. It’s rather out of character for me to not file bugs, but Apple’s bug tracker, RADAR, is so
breathtakingly, insultingly useless that no reasonable person should have to use it. Instead, I
recommend visiting http://fixradarorgtfo.com/ and filing this single RADAR bug: “Fix Radar or
GTFO (duplicate of rdar://10993759).”

172 Chapter 10

http://fixradarorgtfo.com/

This just checks whether a cached response has been sent at ¶ and,
if it finds one, sets it to nil at ·. You can also conditionally cache data by
examining the properties of the response before returning the object to
cache, as shown in Listing 10-10.

-(NSCachedURLResponse *)connection:(NSURLConnection *)connection

willCacheResponse:(NSCachedURLResponse *)cachedResponse {

NSCachedURLResponse *newCachedResponse=cachedResponse;

¶ if ([[[[cachedResponse response] URL] scheme] isEqual:@"https"]) {

newCachedResponse=nil;

}

return newCachedResponse;

}

Listing 10-10: Conditional cache discarding code

This is nearly the same as in Listing 10-9, but it additionally examines
the response being cached at ¶ to determine whether it is being delivered
over HTTPS and discards it if that’s the case.

If you’re using NSURLSession, you can also use ephemeral sessions, which
will not store any data to disk; this includes caches, credentials, and so forth.
Creating an ephemeral session is easy. Just instantiate a configuration object
for your NSURLSessions, like so:

NSURLSessionConfiguration *config = [NSURLSessionConfiguration

ephemeralSessionConfiguration];

You can find more information and examples of how to use NSURLSession

in Chapter 7.

Disable Caching via the Server
Presuming you control the server your application communicates with, you
can instruct the client not to cache requests using the Cache-Control HTTP
header. This allows you to either disable caching application-wide or apply
it only to specific requests. The mechanism for implementing this on the
server side is language-dependent, but the header you’ll want to return for
requests you don’t want cached is as follows:

Cache-Control: no-cache, no-store, must-revalidate

Sadly, at least some versions of iOS (verified as of 6.1) don’t actually
obey these headers. It’s a good idea to set them for sensitive resources
regardless, but don’t rely on this method to solve the problem entirely.

Data Leakage 173

Go Nuclear
The previous approaches will prevent data from being cached, but some-
times you may want to cache data and then clean it up later. This could be
for performance reasons or perhaps because you’re correcting a caching
problem in a newly released version of your application, which has already
cached data locally on disk. Whatever your reason, clearing the cache in the
documented manner doesn’t work, so you’re stuck removing the cached
data forcibly, as in Listing 10-11.

NSString *cacheDir=[NSSearchPathForDirectoriesInDomains(NSCachesDirectory,

NSUserDomainMask, YES) objectAtIndex:0];

[[NSFileManager defaultManager] removeItemAtPath:cacheDir

error:nil];

Listing 10-11: Manually removing the cache database

There’s no guarantee that some other part of the system won’t freak out
if you clear cached data manually. However, this method is the only reliable
way I’ve found to remove cached data after it’s already been written to disk.

Data Leakage from HTTP Local Storage and Databases
The HTML 5 specification allows websites to store and retrieve large amounts
of data (larger than what would fit in a cookie) on the client. These mecha-
nisms are sometimes used to cache data locally so that primarily web-based
applications can function in an offline mode. You can find these databases
in a number of locations on the device or your simulator, including the
following:

• /Library/Caches/*.localstorage

• /Library/Caches/Databases.db

• /Library/Caches/file__0/*.db

You can feed these locations to File Juicer the same way you do with
HTTP caches to get access to the plaintext data. One obvious application
for larger local storage and SQL databases is storing structured information
about communications such as email so that those communications can be
accessed when the user doesn’t have cell phone reception. This can leave
traces around the storage databases, as shown in Figure 10-5.

This exposure is probably an acceptable risk for metadata, but storing
it in an encrypted SQLite store might be better, especially when storing full
message contents. I’ll talk more about how to do this in “Data Protection
API” on page 219.

174 Chapter 10

Figure 10-5: Email metadata left in a mail client

Keylogging and the Autocorrection Database
Everyone is familiar with iOS’s word autocompletion mechanism, the source
of endless entertainment and amusing typos (and of frustration when trying
to use expletives). One aspect of this system that’s gained some attention
in the press is that the autocompletion mechanism acts as an accidental
keylogger, recording portions of the text that a user types in what is basically
a plaintext file to help with future completions. A forensic attacker could
then retrieve that completion database.

This behavior is already disabled for password fields—that is, UITextField
objects with setSecureTextEntry:YES set—but many other forms in an appli-
cation may take sensitive data. As such, developers have to consider the
all too common trade-off between user experience and security. For some
applications, no amount of unencrypted data stored to disk is acceptable.
Other applications handle sensitive data, but they involve so much text
entry that disabling autocorrection would be extremely burdensome.

Fields that take smaller amounts of sensitive data, though, are a
no-brainer. Consider answers to security questions, for example. For
these fields, you’ll want to disable autocorrection behavior by setting the
autocorrectionType property to UITextAutocorrectionTypeNo on UITextField and
UITextView objects. This is also applicable (and a good idea) for UISearchBar

objects because having search contents leak to disk is usually undesirable.
Check out Listing 10-12 for an example of how you might try to disable this
attribute.

UITextField *sensitiveTextField = [[UITextField alloc] initWithFrame:CGRectMake(0,

0, 25, 25)];

[sensitiveTextField setAutocorrectionType:UITextAutocorrectionTypeNo];

Listing 10-12: Disabling autocorrection on a UITextField

Data Leakage 175

Of course, note that I say, “You’ll want to disable this behavior.” You’ll
want to, but you can’t. Around iOS 5.1, a bug crept in that causes the on-disk
word cache to be updated even if you disable autocorrection, autocapital-
ization, spellcheck, and so on. There are currently two ways around this,
ranging from very silly to utterly ridiculous.

The silly approach (shown in Listing 10-13) is to use a UITextView (note
View, rather than Field) and send it the message setSecureTextEntry:YES. The
UITextView class doesn’t actually implement the UITextInputTraits protocol9

correctly, so text isn’t obscured by circles like it would be in a UITextField

configured for password entry. It does, however, prevent text from getting
written to the disk.

-(BOOL)twiddleTextView:(UITextView *)textView {

[textView setSecureTextEntry:YES];

}

Listing 10-13: Setting the SecureTextEntry attribute on a UITextView

The ridiculous method, which works on both UITextView and UITextField

objects, is shown in Listing 10-14.

-(BOOL)twiddleTextField:(UITextField *)textField {

[textField setSecureTextEntry:YES];

[textField setSecureTextEntry:NO];

}

Listing 10-14: Twiddling setSecureTextEntry on a UITextField

Yes, seriously. Just switch keylogging on and then turn it off.
The classes are implemented such that they forget to turn keylogging

back on if you simply wiggle it on and off again. Unfortunately, UISearchbar
also doesn’t implement the protocol correctly, so you can’t pull this trick on
one of the search bars. If preventing data leakage from your search bar is
critical, you may want to replace the search bar with an appropriately styled
text field instead.

Of course, that bug might be fixed in a future version of the OS, so
just be prudent and ensure that the OS your app is running on is a version
that you’ve tested the behavior on before you do this yes/no flipping trick.
Listing 10-15 shows how to do this.

UITextField *sensitiveTextField = [[UITextField alloc] initWithFrame:CGRectMake(0,

0, 25, 25)];

[sensitiveTextField setAutocorrectionType: UITextAutocorrectionTypeNo];

9. http://developer.apple.com/library/ios/#documentation/uikit/reference/UITextInputTraits_Protocol/
Reference/UITextInputTraits.html

176 Chapter 10

http://developer.apple.com/library/ios/#documentation/uikit/reference/UITextInputTraits_Protocol/Reference/UITextInputTraits.html
http://developer.apple.com/library/ios/#documentation/uikit/reference/UITextInputTraits_Protocol/Reference/UITextInputTraits.html

if ([[[UIDevice currentDevice] systemVersion] isEqual: @"8.1.4"]) {

[sensitiveTextField setSecureTextEntry:YES];

[sensitiveTextField setSecureTextEntry:NO];

}

Listing 10-15: Checking iOS version

To help verify that your application isn’t leaking anything unexpected,
you can also check <device ID>/data/Library/Keyboard/dynamic-text.dat on
the simulator or on a jailbroken device. (Figure 10-6 shows an example
dynamic-text.dat file.) This isn’t going to catch every corner case of what
might be committed to the database, but the file should give you a reason-
able idea. Note that the database may not actually get updated until you hit
the Home button.

Figure 10-6: Contents of dynamic-text.dat after using the keyboard to enter message
contents. Note that the order of words does not reflect the order in which they were
entered.

In iOS 8 and later, additional information is stored in the Keyboard
cache. This data is used to help with the QuickType word prediction sys-
tem, but it also leaks more information about conversations and people
who have communicated with the device owner. In the <device ID>/data/
Library/Keyboard/en-dynamic.lm directory,10 you’ll find four additional data
files: dynamic.dat, lexicon.dat, meta.dat, and tags.dat. Check all these files for
data entered into your application. Because QuickType adapts based on the
recipient, the tags.dat file also includes a list of past message recipients so the
completion system can use the correct cache for the correct recipient.

10. The en prefix will be different for different locales, but this is what it is for an English-
speaking device.

Data Leakage 177

Misusing User Preferences
As I briefly mentioned in Chapter 3, user preferences often contain sensitive
information. But user defaults are actually intended to define, say, what URL
an app’s API should be at or other nonsensitive preference information.

Preferences are manipulated through the NSUserDefaults API or, less
commonly, the CFPreferences API, and many developers clearly must not
know what happens to that data on the device. Restrictions on these files
are fairly loose, and user preferences can easily be read and manipulated
using commonly available tools, such as iExplorer.

Listing 10-16 shows an intentionally terrible usage of NSUserDefaults from
the iGoat project.11

NSUserDefaults *credentials = [NSUserDefaults standardUserDefaults];

[credentials setObject:self.username.text forKey:@"username"];

[credentials setObject:self.password.text forKey:@"password"];

[credentials synchronize];

Listing 10-16: The worst possible way to use NSUserDefaults

This is essentially the worst-case scenario for data leakage: the creden-
tials are stored in plaintext in a plist belonging to the app. Many applica-
tions in the wild store user credentials this way, and many have been called
out for it.

One less common problem with NSUserDefaults is that developers may
use it to store information that really shouldn’t be under a user’s control.
For example, some apps hand over the reins for security controls that dic-
tate whether users can download and store files locally or whether they’re
required to enter a PIN before using the app. To protect users, let the server
enforce such decisions as often as possible instead.

When auditing an application, check each use of the NSUserDefaults or
CFPreferences APIs to ensure that the data being stored there is appropriate.
There should be no secret information or information you don’t want a user
to change.

Dealing with Sensitive Data in Snapshots
As I also discussed in Chapter 3, iOS snapshots an app’s current screen state
before sending the app to the background so it can generate an animation
when the app is opened again. This results in potentially sensitive infor-
mation littering the disk, sometimes even if the user doesn’t intentionally
background the app. For example, if someone happens to answer a call in
the middle of entering sensitive information into an application, that screen
state will be written to disk and remain there until overwritten with another

11. https://www.owasp.org/index.php/OWASP_iGoat_Project

178 Chapter 10

https://www.owasp.org/index.php/OWASP_iGoat_Project

snapshot. I’ve seen many applications willing to record people’s SSNs or
credit card numbers in this fashion.

Once these snapshots are written to disk, a physical attacker can easily
retrieve them with common forensics tools. You can even observe the file
being written using the Simulator, as shown in Figure 10-7.

Figure 10-7: A snapshot of a user searching
for embarrassing material on Wikipedia,
saved to local storage

Just suspend your application and open UIApplicationAutomaticSnapshot
Default-Portrait.png, which you’ll find under your app’s Library/Caches/
Snapshots/com.mycompany.myapp directory. Unfortunately, applications can’t
just go and remove snapshots manually. There are, however, a couple of
other ways you can prevent this data from leaking.

Screen Sanitization Strategies
First, you can alter the screen state before the screenshot actually occurs.
You’ll want to implement this in the applicationDidEnterBackground delegate
method, which is the message that your program receives when the applica-
tion is going to be suspended, giving you a few seconds to complete any tasks
before this occurs.

Data Leakage 179

This delegate is distinct from the applicationWillResignActive or
applicationWillTerminate events. The former is invoked when the applica-
tion temporarily loses focus (for example, when interrupted by an incoming
phone call overlay) and the latter when the application is forcibly killed or
has opted out of background operation.12 For an abbreviated example of
the events received over the life cycle of an iOS application, see Figure 10-8.

didFinishLaunchingWithOptions

applicationDidBecomeActive

applicationWillResignActive

applicationDidEnterBackground

applicationWillTerminate

Figure 10-8: The simplified iOS application
life cycle. Code for handling these events
can be defined in the application delegate.

After these tasks are complete, the snapshot should be taken, and the
application should disappear with its little “whoosh” animation. But how can
you sanitize your user’s screen?

The simplest and most reliable method of obscuring screen contents,
and the one that I primarily recommend, is simply placing a splash screen
with some logo art on top of all the current views. You can implement this as
shown in Listing 10-17.

- (void)applicationDidEnterBackground:(UIApplication *)application {

application = [UIApplication sharedApplication];

self.splash = [[UIImageView alloc] initWithFrame:[[UIScreen mainScreen]
bounds]];

12. For more details on the circumstances under which these events are triggered, visit
http://www.cocoanetics.com/2010/07/understanding-ios-4-backgrounding-and-delegate-messaging/ .

180 Chapter 10

http://www.cocoanetics.com/2010/07/understanding-ios-4-backgrounding-and-delegate-messaging/

[self.splash setImage:[UIImage imageNamed:@"myimage.png"]];

[self.splash setUserInteractionEnabled:NO];

[[application keyWindow] addSubview:splash];

}

Listing 10-17: Applying a splash screen

With this code in place, on entering the background, your application
should set whatever image you have stored in myimage.png as the splash
screen. Alternatively, you could set the hidden attribute of the relevant con-
tainer objects—for example, UITextFields, whose contents might be sensitive.
You can use this same approach to hide the entire UIView. This is less visually
appealing but easily does the job in a pinch.

A slightly fancier option is to perform some of your own animation,13 as
in Listing 10-18. This just does a fade-out before removing the content from
the view.

- (void)fadeMe {

[UIView animateWithDuration:0.2

animations:^{view.alpha = 0.0;}

completion:^(BOOL finished){[view removeFromSuperview];}

];

}

Listing 10-18: Animating a fade to transparency

I even saw one application that took its own screenshot of the current
screen state and ran the screenshot through a blur algorithm. It looked
pretty, but hitting all the corner cases is tricky, and you’d have to ensure that
the blur is destructive enough that an attacker couldn’t reverse it.

Regardless of your obfuscation approach, you’ll also need to reverse
your changes in either the applicationDidBecomeActive or applicationWillEnter

Foreground delegate method. For example, to remove the splash image
placed over the screen in Listing 10-17, you could add something like List-
ing 10-19 to the applicationWillEnterForeground method.

- (void)applicationWillEnterForeground:(UIApplication *)application {

[self.splash removeFromSuperview];

self.splash = nil;

}

Listing 10-19: Removing a splash screen

13. http://developer.apple.com/library/ios/#documentation/UIKit/Reference/UIView_Class/UIView/
UIView.html#//apple_ref/occ/instp/UIView/alpha

Data Leakage 181

http://developer.apple.com/library/ios/#documentation/UIKit/Reference/UIView_Class/UIView/UIView.html#//apple_ref/occ/instp/UIView/alpha
http://developer.apple.com/library/ios/#documentation/UIKit/Reference/UIView_Class/UIView/UIView.html#//apple_ref/occ/instp/UIView/alpha

Before you’re done, ensure that your sanitization technique is effective
by repeatedly suspending your app in different application states while
monitoring your application’s Library/Caches/Snapshots/com.mycompany.myapp
directory. Check that the PNG images saved there have all parts of the win-
dow obscured by the splash image.

NOTE The com.mycompany.myapp directory is re-created on every suspension of the appli-
cation. If you’re watching for the file to be created in that directory from the Terminal,
you’ll have to reenter the directory using cd $PWD or similar for the file to appear.

Why Do Those Screen Sanitization Strategies Work?
People often misunderstand the fixes I just described because they don’t
grasp how iOS lays out its views and windows, so I’ve created a flowchart
(Figure 10-9) that shows everything you need to know.

UI elements

UIView

UIWindow

CALayer

Figure 10-9: The hierarchy of iOS views

Every application that displays contents on the screen is backed by a
layer, which is CALayer by default. On top of the layer is an instance of the
UIWindow class, which manages one or more views, instances of the UIView class.
UIViews are hierarchical, so a view can have multiple subviews along with
buttons, text fields, and so forth.

iOS apps typically have only one UIWindow, but multiple windows are quite
possible. By default, windows have a windowLevel property of 0.0, specifying
that the window is at the UIWindowLevelNormal level. Other defined levels are
UIWindowlevelAlert and UIWindowlevelStatusBar, both of which have level pri-
ority over UIWindowLevelNormal, meaning that they’ll appear on top of other

182 Chapter 10

windows. The most obvious scenario is that of an alert, and in that case,
UIAlertView creates a new window on top of all others except the status bar by
default.

The window currently receiving user events is referred to as the key
window, and it can be referenced via the keyWindow method in UIApplication.

Common Sanitization Mistakes
Developers who don’t understand iOS windows and views frequently sani-
tize screens incorrectly. I’ve seen several applications that have taken a few
development iterations to get it right. One flaw I’ve seen is to set only the
key window’s rootViewController to hidden, like so:

UIApplication *application;

application = [UIApplication sharedApplication];

[[[[application] keyWindow] rootViewController] view] setHidden:YES];

This mistake is understandable because most developers are used to
working with UIViews when programming GUIs. While the code will look like
it works much of the time, it still leaves any subviews of the root visible. An
improvement would be to hide the entire key window, like this:

UIApplication *application;

application = [UIApplication sharedApplication];

[[[application] keyWindow] setHidden:YES];

But hiding the key window isn’t a failsafe option either because any
UIAlertView windows will appear above other content and become the key
window; effectively, you’d end up hiding only the alert.

Because several methods of hiding content are error prone, I almost
always recommend that developers use the splash screen approach. There is,
however, an even easier, foolproof approach for some use cases: preventing
suspension entirely.

Avoiding Snapshots by Preventing Suspension
If your application never really needs to be suspended and resumed (that
is, if you want a fresh start with every app launch), then use the Xcode plist
editor to add “Application does not run in background” to your plist and
set the value to YES, as in Figure 10-10. You can also set UIApplicationExitsOn-
Suspend to YES in your Info.plist file from your favored text editor.

Adding that item will cause the application to jump to the applicationWill-

Terminate event rather than stopping at the applicationDidEnterBackground

event, which normally immediately precedes the taking of the screenshot.

Data Leakage 183

Figure 10-10: Adding the “Application does not run in background”
item to the plist

Leaks Due to State Preservation
iOS 6 introduced the concept of state preservation, which provides a method
for maintaining application state between invocations, even if the appli-
cation is killed in the meantime. When state preservation is triggered,
each preservable object’s encodeRestorableStateWithCoder delegate method,
which contains instructions for how to serialize various UI elements to
disk, is called. Then, the decodeRestorableStateWithCoder method is called on
relaunch of the application. This system presents a possibility for sensitive
information to leak from the user interface to storage on disk since the
contents of text fields and other interface data will be put on local storage.

When you are examining a new codebase, you can quickly determine
whether any state preservation is happening by grepping the codebase for
restorationIdentifier, rather than clicking your way through all the Story-
board UI elements.

If preservation is in use, you should find results like this one in the
*.storyboard files:

<viewController restorationIdentifier="viewController2" title="Second" id="3"

customClass="StatePreservatorSecondViewController" sceneMemberID=
"viewController">

184 Chapter 10

<view key="view" contentMode="scaleToFill" id="17">

<rect key="frame" x="0.0" y="20" width="320" height="499"/>

<autoresizingMask key="autoresizingMask" widthSizable="YES" heightSizable=
"YES"/>
<subviews>

<textView clipsSubviews="YES" multipleTouchEnabled="YES" contentMode=
"scaleToFill" translatesAutoresizingMaskIntoConstraints="NO" id="Zl1-tO-jGB">

<textInputTraits key="textInputTraits" autocapitalizationType=
"sentences"/>

</textView>

Note that there is a view controller with a restorationIdentifier attribute,
and this controller contains a subview with a textView object. If the appli-
cation delegate implements the encodeRestorableStateWithCoder method, it
can specify an encodeObject method that preserves the .text attribute of the
UITextView for later restoration. This method can be used to ensure that text
typed into the field isn’t lost if the application is terminated,14 as shown in
Listing 10-20.

-(void)encodeRestorableStateWithCoder:(NSCoder *)coder {

[super encodeRestorableStateWithCoder:coder];

[coder encodeObject:_messageBox.text forKey:@"messageBoxContents"];

}

Listing 10-20: An example encodeRestorableStateWithCoder method

After performing functional testing, you can also examine the applica-
tion’s Library/Saved Application State/com.company.appname.savedState directory,
where you’ll find the descriptively named data.data file. This file contains the
serialized state of the application for objects that have restorationIdentifiers

assigned. Examine this file to determine whether any sensitive data from the
user interface may have been encoded. You can also do this on the device, if
you’re performing black-box testing.

Secure State Preservation
If a product needs the UX and convenience of state preservation but needs
data to be stored securely while on disk, you can encrypt sensitive object con-
tents before passing them to the encodeObject method. I discuss encryption in
more detail in Chapter 13), but here’s how you’d encrypt this particular sort
of data.

14. Check out a good example of creating a Storyboard application with state preservation at
http://www.techotopia.com/index.php/An_iOS_6_iPhone_State_Preservation_and_Restoration_Tutorial .

Data Leakage 185

http://www.techotopia.com/index.php/An_iOS_6_iPhone_State_Preservation_and_Restoration_Tutorial

When the application is installed, generate an encryption key and store
it in the Keychain with secItemAdd. Then, in your encodeRestorableStateWithCoder

methods, read the key out of the Keychain and use it as the key for an
encryption operation.15 Take the resulting data and serialize it with the
NSCoder’s encodeObject method. Finally, in the decodeRestorableStateWithCoder

method, perform the same operations in reverse to restore the application’s
state.

You can use the SecureNSCoder project16 to help implement that
functionality. SecureNSCoder can automatically generate a key for your
application, store it in the Keychain, and use it to encode and decode your
program state. For the rest of this section, I’ll walk you through a sample
project that demonstrates how to use this tool in your own programs.

First, include the SecureArchiveDelegate and SimpleKeychainWrapper files in
your project. Then, include SecureArchiverDelegate.h in your view controller’s
.h file, as shown in Listing 10-21.

#import <UIKit/UIKit.h>

#import "SecureArchiverDelegate.h"

@interface ViewController : UIViewController

// Some simple properties, adding one for the delegate

@property (weak, nonatomic) IBOutlet UITextField *textField;

@property (weak, nonatomic) SecureArchiverDelegate *delegate;

@end

Listing 10-21: A basic ViewController.h

Next, implement the initWithCoder method, as in Listing 10-22.

- (id)initWithCoder:(NSKeyedUnarchiver *)coder {

if (self = [super initWithCoder:coder]) {

return self;

}

return nil;

}

Listing 10-22: initWithCoder in ViewController.m

15. Using CCCrypt or, ideally, RNCryptor: https://github.com/rnapier/RNCryptor

16. Available at https://github.com/iSECPartners/SecureNSCoder

186 Chapter 10

https://github.com/rnapier/RNCryptor
https://github.com/iSECPartners/SecureNSCoder

Then implement the awakeFromNib method shown in Listing 10-23.

- (void)awakeFromNib {

self.restorationIdentifier = NSStringFromClass([self class]);

self.restorationClass = [UIViewController class];

}

Listing 10-23: awakeFromNib in ViewController.m

Finally, implement the two state preservation methods in Listing 10-24.

- (void)encodeRestorableStateWithCoder:(NSKeyedArchiver *)coder {

// preserve state

SecureArchiverDelegate *saDelegate = [[SecureArchiverDelegate alloc] init];

[self setDelegate:saDelegate];

[coder setDelegate:[self delegate]];

[coder encodeObject:[[self textField] text] forKey:@"textFieldText"];

[super encodeRestorableStateWithCoder:coder];

}

- (void)decodeRestorableStateWithCoder:(NSKeyedUnarchiver *)coder {

// restore the preserved state

SecureArchiverDelegate *saDelegate = [[SecureArchiverDelegate alloc] init];

[self setDelegate:saDelegate];

[coder setDelegate:[self delegate]];

[[self textField] setText:[coder decodeObjectForKey:@"textFieldText"]];

[super decodeRestorableStateWithCoder:coder];

}

Listing 10-24: Encode and decode methods in ViewController.m

You’ve seen how data can leak from applications on a device, but what
about data that’s been backed up to iCloud? Well, if you’re dealing with
sensitive data, there’s really only one technique I can recommend there:
avoid storing it on iCloud entirely.

Getting Off iCloud to Avoid Leaks
In recent versions of iOS, much of your application’s data can be synced to a
user’s iCloud account, where it can be shared across devices. By default, only
three of your application directories are safe from the clutches of iCloud.

• AppName.app

• Library/Caches

• /tmp

Data Leakage 187

If you want any of your other files to remain only on the device, you’ll
have to take responsibility for them yourself.17 Set the NSURLIsExcludedFrom-

BackupKey attribute on those files, using an NSURL as the path to the file, to
prevent the file from backing up to iCloud, as in Listing 10-25.

- (BOOL)addSkipBackupAttributeToItemAtURL:(NSURL *)URL {

NSError *error = nil;

¶ [URL setResourceValue:[NSNumber numberWithBool:YES]

forKey:NSURLIsExcludedFromBackupKey

error:&error];

return error == nil;

}

Listing 10-25: Setting file attributes to exclude a file from backup

You can set the NSURLIsExcludedFromBackupKey with the setResourceValue

NSURL method, shown at ¶.

Closing Thoughts
Data leakage on mobile devices is a broad and ever-changing area that
makes up a large percentage of issues found in mobile applications when
subjected to security audits. Ideally, some of the things you’ve examined
in this chapter will help you find useful bugs, as well as help you identify
changes when newer versions of iOS are released. I’ll now move on to cover
some basic C and memory corruption attacks, which are usually rarer on iOS
but potentially much more dangerous.

17. http://developer.apple.com/library/ios/documentation/iPhone/Conceptual/
iPhoneOSProgrammingGuide/iPhoneAppProgrammingGuide.pdf (page 112)

188 Chapter 10

http://developer.apple.com/library/ios/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/iPhoneAppProgrammingGuide.pdf
http://developer.apple.com/library/ios/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/iPhoneAppProgrammingGuide.pdf

11
LEGACY ISSUES

AND BAGGAGE FROM C

Objective-C and Cocoa help mitigate many security
problems that you might run into with C or C++.
Objective-C is, however, still a flavor of C, which
fundamentally isn’t a “safe” language, and some
Cocoa APIs are still vulnerable to the types of data
theft or code execution attacks you might expect in
C programs. C and C++ can also be intermingled freely with Objective-C.
Many iOS applications use large amounts of C and C++ code, whether
because developers want to use a familiar library or are trying to keep code
as portable as possible between platforms. There are some mitigations in
place to prevent code execution attacks, as discussed in Chapter 1, but
these can be bypassed by more skilled attackers. As such, it’s a good idea
to familiarize yourself with these bugs and attacks.

In this chapter, you’ll learn about some of the types of attacks to look
out for, the places where C bugs creep into Objective-C, and how to fix these
issues. The topic of native C code issues is broad, so this chapter is a “great-
est hits” of these issues to give you the basic foundation for understanding
the theory behind these flaws and the attacks that exploit them.

Format Strings
Format string attacks1 leverage a misuse of APIs that expect a format string,
or a string that defines the data types of which the string will be composed.
In C, the most commonly used functions that accept format strings are in
the printf family; there are a number of other functions, such as syslog, that
accept them as well. In Objective-C, these methods usually have suffixes like
WithFormat or AppendingFormat, though there are several exceptions. Here are
examples of all three:

• [NSString *WithFormat]

• [NSString stringByAppendingFormat]

• [NSMutableString appendFormat]

• [NSAlert alertWithMessageText]

• [NSException raise:format:]

• NSLog()

Attackers commonly exploit format string vulnerabilities to do two
things: execute arbitrary code and read process memory. These vulnera-
bilities generally stem from two age-old C format string operators: %n and
%x. The rarely used %n operator is meant to store the value of the characters
printed so far in an integer on the stack. It can, however, be leveraged to
overwrite portions of memory. The %x operator is meant to print values as
hexadecimal, but when no value is passed in to be printed, it reads values
from the stack.

Unfortunately for us bug hunters, Apple has disabled %n in Cocoa classes
that accept format strings. But the %n format string is allowed in regular C
code, so code execution format string attacks are still possible.2 The reason
that %n can result in code execution is because it writes to the stack, and
the format string is also stored on the stack. Exploitation varies depending
on the specific bug, but the main upshot is that by crafting a format string
that contains %n and also a memory address to write to, you can get arbitrary
integers written to specific parts of memory. In combination with some shell
code, this can be exploited similarly to a buffer overflow attack.3

The %x operator, on the other hand, is alive and well in both Objective-C
methods and C functions. If an attacker can pass %x to an input that lacks a
format string specifier, the input will be interpreted as a format string, and
the contents of a stack will be written in hexadecimal where the expected
string should appear. If attackers can then view this output, they can collect

1. The term format string attack was popularized by Tim Newsham’s paper of the same name; see
http://www.thenewsh.com/~newsham/format-string-attacks.pdf .

2. Yes, %n works. Xcode might complain about it, but manual builds, such as those performed
with the xcodebuild command line utility, work fine.

3. You can find more details on exploiting format strings to gain code execution in Scut’s paper
on the topic; see https://crypto.stanford.edu/cs155/papers/formatstring-1.2.pdf .

190 Chapter 11

http://www.thenewsh.com/~newsham/format-string-attacks.pdf
https://crypto.stanford.edu/cs155/papers/formatstring-1.2.pdf

potentially sensitive information from the process’s memory, such as user-
names, passwords, or other personal data.

Of course, both of these vulnerabilities rely on a program not control-
ling user input properly. Let’s take a look at how an attacker might misuse
format strings in such a situation and how applications can prevent that
from happening.

Preventing Classic C Format String Attacks
The typical example of a format string vulnerability is when a program
passes a variable directly to printf, without manually specifying a format
string. If this variable’s contents are supplied by external input that an
attacker can control, then the attacker could execute code on a device or
steal data from its memory. You can test some contrived vulnerable code like
this in Xcode:

char *t;

t = "%x%x%x%x%x%x%x%x";

printf(t);

This code simply supplies a string containing a bunch of %x specifiers
to the printf function. In a real-world program, these values could come
from any number of places, such as a user input field or DNS query result.
When the code executes, you should see a string of hexadecimal output
written to your console. This output contains the hexadecimal values of
variables stored on the stack. If an application has stored a password or
encryption key as a value on the stack and parses some attacker-supplied
data, an attacker could cause this information to leak to somewhere they can
then read. If you change the previous example to contain %n specifiers, the
behavior is different. Here’s how that would look:

char *t;

t = "%n%n%n%n%n";

printf(t);

Running this example in Xcode should cause Xcode to drop to lldb with
the error EXC_BAD_ACCESS. Whenever you see that message, your program is
trying to read or write to some memory it shouldn’t. In a carefully crafted
attack, you won’t see such errors, of course; the code will simply execute.

But you can prevent attackers from hijacking strings pretty easily by
controlling user input. In this case, just change that printf to specify its own
format string, as follows:

char *t;

t = "%n%n%n%n%n";

printf("%s", t);

Legacy Issues and Baggage from C 191

Run this in Xcode, and you should see the literal %n%n%n%n%n written
harmlessly to the console. These examples, of course, are plain old C, but
knowing how they work will help you explore format string attacks with an
Objective-C twist.

Preventing Objective-C Format String Attacks
Similar to plain C, you can pass in any of the printf format operators to a
number of different Objective-C APIs. You can test this easily in Xcode by
passing a bogus format string to NSLog:

NSString *userText = @"%x";

NSLog(userText);

Much like the previous %x example, this will spit out memory contents
in hexadecimal to the console. One format string vulnerability I’ve come
across in real iOS applications is code that passes user-supplied input to a
“formatting” function, which does some processing and returns an NSString

object, as shown in Listing 11-1.

NSString *myStuff = @"Here is my stuff.";

NSString *unformattedStuff = @"Evil things %x%x%x%x%x";

¶ myStuff = [myStuff stringByAppendingFormat:[UtilityClass formatStuff:

unformattedStuff.text]];

Listing 11-1: Totally the wrong way to pass in data to a format string

This example just assumes that the resulting NSString stored in myStuff

at ¶ is safe; after all, the contents of unformattedStuff.text were “formatted.”
But unless the formatStuff method has some special way of sanitizing that
input file, the resulting string could contain format string specifiers. If that
happens, you still have a format string issue, and the resulting string will
contain values from the stack.

NSString objects aren’t magically safe from format string attacks. The
correct way to output an NSString passed to a method requiring a format
string is to use the %@ specifier, as shown in Listing 11-2.

NSString myStuff = @"Here is my stuff.";

myStuff = [myStuff stringByAppendingFormat:@"%@", [UtilityClass formatStuff:

unformattedStuff.text]];

Listing 11-2: The correct way to use a method expecting a format string

With the %@ specifier in front, no matter how many %x and %n operators
unformattedStuff.text might contain, myStuff should come out as a harmless
string.

192 Chapter 11

The %x and %n specifiers are the most useful ones to attackers, but
even in their absence, attackers can still cause undesirable behavior, such
as crashes, when trying to read inaccessible memory, even using basic %s

specifiers. Now that I’ve covered how format string attacks work and how
to prevent them, I’ll show you some other methods of executing mali-
cious code.

Buffer Overflows and the Stack
Buffer overflows have long haunted the world of C, allowing crafted input
from untrusted sources to crash programs or execute third-party code within
the process of a vulnerable program. While buffer overflows have been
known since the 1970s, the first prominent example of their exploitation
was the Morris worm, which included a buffer overflow exploit of the UNIX
finger daemon.

Buffer overflows start by overwriting portions of memory. The basic
memory layout of a process consists of the program code, any data the
program needs to run, the stack, and the heap, as shown in Figure 11-1.

data

...

stack

heap

code

...

Figure 11-1: Arrangement
of process memory

The code segment (often referred to as the text segment) is where the
program’s actual executable is loaded into memory. The data segment
contains the program’s global variables and static local variables. The heap
is where the bulk of nonexecutable program data will reside, in memory
dynamically allocated by the program. The stack is where local variables are
stored, as well as addresses of functions and, importantly, a pointer to the
address that contains the next instructions that the program is to execute.

There are two basic types of overflows: those that overwrite portions of a
program’s stack and those that overwrite portions of the heap. Let’s look at
a buffer overflow vulnerability now.

Legacy Issues and Baggage from C 193

A strcpy Buffer Overflow
A classic example of a stack-based buffer overflow is shown in Listing 11-3.

#include <string.h>

uid_t check_user(char *provided_uname, char *provided_pw) {

char password[32];

char username[32];

strcpy(password, provided_pw);

strcpy(username, provided_uname);

struct *passwd pw = getpwnam(username);

if (0 != strcmp(crypt(password), pw->pw_passwd))

return -1;

return pw->uid;

}

Listing 11-3: Code vulnerable to an overflow

Both username and password have been allocated 32 bytes. Under most cir-
cumstances, this program should function normally and compare the user-
supplied password to the stored password since usernames and passwords
tend to be less than 32 characters. However, when either value is supplied
with an input that exceeds 32 characters, the additional characters start
overwriting the memory adjacent to the variable on the stack, as illustrated
in Figure 11-2. This means that an attacker can overwrite the return address
of the function, specifying that the next thing to be executed is a blob of
malicious code the attacker has placed in the current input or elsewhere in
memory.

virtual address space virtual address space

locals

return address

A’s local
variables

buffer B

text

locals

return address

A’s local
variables

text

B Bstack
pointer

stack
pointer

Figure 11-2: Memory layout before and after an overflow

194 Chapter 11

Since this example hardcodes a character limit and doesn’t check
that the input is within the limit, attacker-controlled input can be longer
than the receiving data structure allows. Data will overflow the bounds of
that buffer and overwrite portions of memory that could allow for code
execution.

Preventing Buffer Overflows
There are a few ways to prevent buffer overflows, and most of them are
pretty simple.

Checking Input Size Before Using It
The easiest fix is to sanity check any input before loading it into a data
structure. For example, vulnerable programs like the one in Listing 11-3
often defend against buffer overflows by calculating the size of incoming
data themselves, rather than trusting an externally supplied size to be the
right length. This fix can be as simple as replacing the strcpy functions in
Listing 11-3 with if statements like this one:

if (strnlen(provided_pw, 32) < strnlen(password, 32))

strcpy(password, provided_pw);

Checking the size of the provided password with sizeof should ensure
that any data exceeding the size of the buffer is rejected. Ideally of course,
you wouldn’t be using statically sized buffers at all—higher level classes like
NSString or std::string and their associated methods should take care of
these kinds of issues for you.

Using Safer String APIs
Another coding best practice that can protect you from buffer overflows is
avoiding “known bad” APIs, such as the strcpy and strcat families. These
copy data into a destination buffer without checking whether the destination
can actually handle that much data, which is why adding a size check was so
important in the previous section. Listing 11-3 showed one bad use of strcpy;
here’s an even simpler one:

void copythings(char *things) {

char buf[32];

strcpy(buf, things);

}

In this simple and obvious kind of buffer overflow vulnerability, the buf

buffer is only 32 bytes long, and the argument things is copied into it. But
this code never checks the size of the things buffer before attempting to copy
it into buf. If any call this function passes in a buffer is larger than 32 bytes,
the result will be a buffer overflow.

Legacy Issues and Baggage from C 195

The safer way to copy and concatenate strings is to use the strlcpy and
strlcat functions,4 which take the size of the destination buffer as an argu-
ment, as follows:

void copythings(char *things) {

char buf[32];

length = strlcpy(buf, things, sizeof(buf));

}

Here, the strlcpy function will copy only 31 bytes of the source string,
plus a null terminator. This may result in the string being truncated, but at
least it won’t overflow the statically sized buffer. The strl family is not avail-
able on all platforms but is available on BSD-based systems, including iOS.

In addition to these types of overflows, errors can also be made when
performing integer operations, which can lead to a denial of service or code
execution.

Integer Overflows and the Heap
Integer overflows result from performing a calculation that gives a value larger
than the maximum size of an integer on a platform. As you likely know,
there are two types of integers in C (and therefore, in Objective-C): signed
and unsigned. Signed integers can be positive or negative, and unsigned
integers are always positive. If you attempt to perform a calculation that
overflows the value of either type of integers, badness occurs. An unsigned
integer will wrap around past the maximum value of an integer, starting
over at zero. If the integer is signed, it will start at a negative number, the
minimum value of an unsigned integer. Here’s an example:

NSInteger foo = 9223372036854775807;

NSLog(@"%li", (long)foo);

foo++;

NSLog(@"%li", (long)foo);

This starts with a signed integer foo, using the maximum size of a signed
integer on iOS. When the number is incremented, the output on the con-
sole should wrap around to a negative number, -9223372036854775808.

If you were to use an unsigned integer as shown in the following
example, you’d see the integer overflow, and the output on the console
would be 0:

NSUInteger foo = 18446744073709551615;

NSLog(@"%lu", (unsigned long)foo);

4. Todd C. Miller, maintainer of sudo, discusses the merits of these functions further at
http://www.sudo.ws/todd/papers/strlcpy.html .

196 Chapter 11

http://www.sudo.ws/todd/papers/strlcpy.html

foo++;

NSLog(@"%lu", (unsigned long)foo);

While buffer overflows overwrite the stack, integer overflows give attack-
ers access to the heap, and I’ll show you how that works next.

A malloc Integer Overflow
An integer overflow most often causes issues when it occurs while calculating
the necessary space to pass to a malloc() call, making the space allocated
far too small to contain the value to store. When data is loaded into the
newly allocated space, the data that won’t fit is written beyond the end of the
allocated space, into the heap. This puts you in a heap overflow situation: if
the attacker provides maliciously crafted data to malloc() and overwrites the
right pointer in the heap, code execution can occur.

Integer overflow vulnerabilities tend to take the following form:

#define GOAT_NAME_LEN 32

typedef struct Goat {

int leg_count; // usually 4

bool has_goatee;

char name[GOAT_NAME_LEN];

struct Goat* parent1;

struct Goat* parent2;

size_t kid_count;

struct Goat** kids;

} Goat;

int ReadInt(int socket) {

int result;

read(socket, &result, sizeof(result));

return result;

}

void ReadGoat(Goat* goat, int socket) {

read(socket, goat, sizeof(Goat));

}

Goat* ReadGoats(int* count, int socket) {

¶ *count = ReadInt(socket);

· Goat* goats = malloc(*count * sizeof(Goat));

¸ for (int i = 0; i < *count; ++i) {

ReadGoat(&goats[i], socket);

}

return goats;

}

Legacy Issues and Baggage from C 197

This code creates an object of type Goat, as well as the ReadGoats function,
which accepts a socket and the number of goats to read from that socket.
At ¶, the ReadInt function reads the number of goats that will be processed
from the socket itself.

If that number is sufficiently large, the malloc() operation at · will result
in a size so large that the integer wraps around to negative numbers. With
the right value of count, an attacker could make the malloc() attempt to
allocate zero bytes, or a very small number. When the loop at ¸ executes,
it will read the number of goats from the socket that corresponds to the very
large value of count. Because goats is small, this can overflow the allocated
memory, allowing data to be written to the heap.

Preventing Integer Overflows
There are several approaches to preventing integer overflows, but the basic
idea is to check the values of integers before you operate on them. I sug-
gest adopting the basic structure from Apple’s coding guide.5 Here’s one
example:

if (n > 0 && m > 0 && INT_MAX/n >= m) {

size_t bytes = n * m;

foo = malloc(bytes);

}

Before calculating the value of bytes, this if statement checks that n and
m are greater than 0 and divides one factor by a maximum size to make sure
that the result is larger than the other factor. If both conditions are true,
then you know that bytes will fit into an integer, and it should be safe to use
it to allocate memory.

Closing Thoughts
The list of C coding flaws in this chapter is far from exhaustive, but knowing
some of these flaws should help you start spotting C-related issues in iOS
applications. There are also many other resources that can help you hone
your C security skills. If you’re interested in learning more about the intrica-
cies of C and how it can go wrong, I recommend getting a copy of Peter van
der Linden’s Expert C Programming: Deep C Secrets (Prentice Hall, 1994).

Now that I’ve aired some of the dirty laundry of C, let’s head back to
Cocoa land and look at modern attacks derived largely from the field of web
application security: injection attacks.

5. https://developer.apple.com/library/ios/documentation/Security/Conceptual/SecureCodingGuide/
Articles/BufferOverflows.html

198 Chapter 11

https://developer.apple.com/library/ios/documentation/Security/Conceptual/SecureCodingGuide/Articles/BufferOverflows.html
https://developer.apple.com/library/ios/documentation/Security/Conceptual/SecureCodingGuide/Articles/BufferOverflows.html

12
INJECTION ATTACKS

In this chapter, I’ll discuss types of injection attacks,
many of which apply both to iOS client applications
and to their remote endpoints or APIs. While a thor-
ough examination of all potential server-side flaws is
outside the scope of this book, this chapter will give
you an idea of how an iOS app and its complementary
endpoint or web app can work together to prevent
security flaws.

Injection attacks are standard for web applications, but client-side
injection attacks are less common and go largely unnoticed by developers
and security engineers. Client-side injection attacks happen when remotely
supplied data is parsed by the program running on the device. The most
notable examples of this are cross-site scripting, SQL injection, predicate
injection, and XML injection.

Client-Side Cross-Site Scripting
Cross-site scripting (XSS) is an issue most often found in web applications, but
JavaScript can be injected into the content used by iOS applications, too.
One prominent app reported to have an XSS vulnerability was the Skype

mobile application. As security researcher Phil Purviance described on his
Superevr blog, at the time, the app used a UIWebView to render content.1 The
full name of the remote user was not sanitized before display, which allowed
an attacker to insert a malicious script into a remote user’s application by
embedding the script in their username. In this case, the attack could steal
sensitive data (the contents of the Address Book) from the device. Such
attacks can also be used to, say, insert a fake login page that submits creden-
tials to an attacker-controlled domain.

If your application uses a UIWebView, then to avoid XSS vulnerability,
be particularly vigilant that you don’t take any unsanitized user-supplied
data from the server or other external sources and integrate it into the user
interface. You can do this most effectively with a two-part approach, using
both input sanitization and output encoding.

Input Sanitization
Input sanitization involves stripping potentially harmful characters from
external inputs, using either a blacklist or whitelist approach.

Blacklisting Bad Input
In a blacklist, you try to list every character that could cause a security prob-
lem if accepted as input and give that list to your application. Then, you
write your application to either remove unacceptable characters or throw an
error when they appear.

Blacklisting is a fragile approach, and it’s rarely effective. You need to
know every conceivable way data could cause trouble, including every type of
character encoding, every JavaScript event handler or SQL special character,
and so on. For example, you might simply add < and > to a blacklist in hopes
of preventing XSS via <script> tags, but you’re ignoring attacks that can be
accomplished with only double quotes, parentheses, and an equal sign.

In general, if your app or an app you’re testing relies on blacklisting
characters, investigate whether the blacklist might be masking an under-
lying flaw. Such filters can be easily bypassed, and an app that relies on this
technique probably also lacks effective output encoding, which I’ll discuss in
“Output Encoding” on page 201.

Whitelisting Allowable Input
In a whitelist approach, you instead explicitly define the characters that are
acceptable for a particular user input. Whitelisting is preferable to blacklist-
ing because comprehensively specifying what characters should be allowed
is easier than speculating about what might be bad. In a whitelist approach,
you might define the characters that a phone number field should allow: 0
through 9 and possibly dashes and parentheses. Not only does this preclude
most any malicious input, but it also keeps data clean in your database.

1. https://superevr.com/blog/2011/xss-in-skype-for-ios/

200 Chapter 12

https://superevr.com/blog/2011/xss-in-skype-for-ios/

Finding Balance
It’s possible to be misguidedly zealous about input sanitization with either
blacklisting or whitelisting. Some programs and websites actually disallow
legitimate characters in some inputs (most notably, user passwords). You
may have run across an app or site that refuses to accept a password con-
taining special characters (such as !, <, >, ', or ;). This is often an indication
that the programmers are handling data on the backend in a remarkably
incompetent way.

For example, if an application strips apostrophes or semicolons, the
developers may not be using parameterized SQL statements, instead rely-
ing on removing “bad” special characters to prevent SQL injection. But
this blacklisting of suspected bad characters just reduces user password
complexity, and it’s unlikely to solve the problem of SQL injection in any
comprehensive fashion.

For input sanitization to work correctly, it also needs to happen as close
as possible to the point before the data is processed or stored. For example,
when an iOS application talks to a remote API, the application can certainly
try to strip out harmful characters or restrict input to a certain character
range. This is fine, but it only results in increased usability for the user. The
user can see immediately that their input won’t be accepted, rather than
waiting until they fill out all the form data and try to submit it.

Your typical users may appreciate that side effect, but there’s a prob-
lem here: the user controls the device and, ultimately, how your program
behaves. If your UI won’t allow certain values as input, all an attacker needs
to do is route the device’s traffic through a proxy, as I described in “Net-
work and Proxy Setup” on page 43. The user can then modify data after it
leaves the app but before it reaches the server and add the harmful charac-
ters back.

To counter this possibility, never trust a mobile app to supply good data.
In a client-server app, always ensure that sanitization happens on the server.

With sane input sanitization in place, you should move on to encoding
your output.

Output Encoding
Output encoding, sometimes known as HTML entity encoding, is the pro-
cess of taking user input and replacing characters with their HTML repre-
sentations. This process is necessary for any potentially untrusted data that
might end up rendered in a WebView. For example, the characters < and >

would be translated to < and >, respectively. When data is displayed to
the user, those characters should appear in the UI as < and >, but because
they’ve been encoded, the HTML engine doesn’t process them as meta-
characters, which might be used in a <script> tag.

Injection Attacks 201

Output encoding is the last and most potent line of defense before
delivering HTML that contains third-party input to a client. Even if you
totally neglected to strip potentially harmful metacharacters during input
sanitization, as long as you encode your output, you don’t have to worry
about whether the data you send will be executed by the browser rather than
just displayed.

Displaying Untrusted Data
Like input sanitization, output encoding is usually a process you should
perform on the server side, not the client. But if you have to display data
from domains outside your control that contain untrusted data, you’ll want
to perform HTML entity encoding before displaying content to the user.

Google Toolbox for Mac includes two category methods of NSString
that you could use to encode HTML entities on the client side: gtm_string-
ByEscapingForHTML and gtm_stringByEscapingForAsciiHTML.2 Including Google’s
category for NSString in your project makes it so you can simply call a method
on any NSString object to have it return an encoded representation:

NSString *escaped;

escaped = [@"Meet & greet" gtm_stringByEscapingForHTML];

After this escaping, escaped should contain the NSString Meet & greet,
which should be safe to render within HTML.

Don’t Over-Encode
As with input sanitization, be careful not to get carried away with output
encoding. Some applications entity-encode received characters before
sending them to a server or storing them in a database and then end up
reencoding the encoded data. You may have seen the results in mobile apps
or web apps.

For example, I once saw an application display a banner inviting me
to “Meet & greet.” In the underlying HTML source, this data would
appear as follows:

Meet &amp; greet

The original input was already encoded (to &) and would have ren-
dered fine as & in the browser. Encoding it again causes it to show up as &

to the user. This doesn’t create a security problem, but it can cause your
data to become messy and hard to deal with. Just remember that there’s
a reason the technique is called output encoding : it needs to be done just
before output.

2. You can download Google Toolbox for Mac at https://code.google.com/p/google-toolbox-for-mac/ .

202 Chapter 12

https://code.google.com/p/google-toolbox-for-mac/

SQL Injection
Client-side SQL injection results from parsing externally supplied data that
injects valid SQL into a badly formed SQL statement. Statements that are
constructed dynamically on execution, using unsanitized, externally sup-
plied input, are vulnerable to SQL injection. Malicious input will contain
SQL metacharacters and statements that subvert the intent of the original
query.

For example, imagine a simple status message is posted to a website by
a user. It then gets downloaded and added to a local data store. If the user
posting the original content has basic security knowledge and malicious
intent, the user could embed SQL into the message, which will be executed
when parsed by the SQL engine. This malicious SQL could destroy or mod-
ify existing data in the data store.

On iOS, the most commonly used SQL API is SQLite. Listing 12-1 shows
an example of an incorrectly formed, dynamically constructed SQL state-
ment for SQLite.

NSString *uid = [myHTTPConnection getUID];

NSString *statement = [NSString StringWithFormat:@"SELECT username FROM users where

uid = '%@'",uid];

const char *sql = [statement UTF8String];

Listing 12-1: An unparameterized SQL statement vulnerable to SQL injection

The problem here is that the uid value is being taken from user-supplied
input and inserted as is into a SQL statement using a format string. Any SQL
in the user-supplied parameter will then become part of that statement when
it ultimately gets executed.

To prevent SQL injection, simply use parameterized statements to avoid
the dynamic construction of SQL statements in the first place. Instead of
constructing the statement dynamically and passing it to the SQL parser, a
parameterized statement causes the statement to be evaluated and compiled
independently of the parameters. The parameters themselves are supplied
to the compiled statement upon execution.

Using parameterized statements, the correct way to structure the query
in Listing 12-1 is to use ? as a placeholder character for the supplied parame-
ter, as in Listing 12-2.

static sqlite3_stmt *selectUid = nil;

¶ const char *sql = "SELECT username FROM users where uid = ?";

· sqlite3_prepare_v2(db, sql, -1, &selectUid, NULL);

¸ sqlite3_bind_int(selectUid, 1, uid);

int status = sqlite3_step(selectUid);

Listing 12-2: A properly parameterized SQL statement

Injection Attacks 203

The SQL statement is constructed with the ? placeholder at ¶. The
code then compiles the SQL statement with sqlite3_prepare_v2 at · and
lastly binds the user-supplied uid using sqlite3_bind_int at ¸. Since the SQL
statement has already been constructed, no additional SQL provided in the
uid parameter will be added to the SQL itself; it’s simply passed in by value.

In addition to preventing SQL injection, using parameterized, prepared
statements will improve application performance under most circumstances.
You should use them for all SQL statements, even if a statement isn’t taking
input from untrusted sources.

Predicate Injection
Predicates let you perform logical comparisons between data using a basic
query language not dissimilar to SQL. In a basic NSPredicate, values are com-
pared or filtered using format strings.

¶ NSMutableArray *fruit = [NSMutableArray arrayWithObjects:@"Grape", @"Peach",
@"orange", @"grapefruit", nil];

· NSPredicate *pred = [NSPredicate predicateWithFormat:@"SELF CONTAINS[c] 'Grape'"];

¸ NSArray *grapethings = [fruit filteredArrayUsingPredicate:pred];

NSLog(@"%@", grapethings);

At ¶, an array of various types of fruit is created; this array will be the
data source to evaluate against an expression. When creating a predicate
at ·, a query is created that checks whether the string "Grape" is contained
in the item the predicate is being compared to. (The [c] makes this com-
parison case insensitive.) When a new array is instantiated at ¸ to contain
the results of this comparison, the filteredArrayUsingPredicate method of the
fruit array is used to pass in the predicate. The resulting grapethings array
should now contain both "Grape" and "grapefruit".

So far, so good! But a few things can go wrong when you build a pred-
icate query using externally supplied data. First, consider the case where a
predicate is built using SQL’s LIKE operator, as follows.

NSPredicate *pred;

pred = [NSPredicate predicateWithFormat:@"pin LIKE %@", [self.pin text]];

This example evaluates a PIN, perhaps a secondary form of authenti-
cation for my application. But the LIKE operator performs the evaluation,
which means a simple entry of the wildcard character (*) from a user will
cause the predicate to evaluate to true, effectively bypassing PIN protection.

204 Chapter 12

This result may seem obvious to those familiar with SQL injection
(since SQL also has a LIKE operator), but consider the more subtle case
where you’re examining code that uses the predicate MATCHES operator, as
shown here:

NSPredicate *pred;

pred = [NSPredicate predicateWithFormat:@"pin MATCHES %@", [self.pin text]];

This code has the same issue as the LIKE example, but rather than just
accepting wildcards, MATCHES expects a regular expression. Therefore, using
.* as your PIN will be enough to bypass validation.

To prevent predicate injection attacks, examine all uses of NSPredicate
in your code and make sure that the operators being used make sense for
the application. It’s also probably a good idea to limit the characters that
are allowed in user-supplied data that gets passed to a predicate to ensure
that characters like wildcards don’t get plugged in. Or, simply don’t use a
predicate for security-sensitive operations.

XML Injection
XML injection occurs when malicious XML is parsed by an XML parser
instance. Typically, this type of attack is used to force an application to
load external resources over the network or consume system resources.
In the iOS world, the most commonly used XML parser is the Foundation
NSXMLParser class.

Injection Through XML External Entities
One basic function of an XML parser is to handle XML entities. You can
basically think of these as shortcuts or euphemisms. For example, say you
have a simple string like this one:

<!ENTITY myEntity "This is some text that I don't want to have to spell out

repeatedly">

You could then reference the entity in other parts of an XML document,
and the parser would insert the contents of the entity at that placeholder.
To reference your defined entity, simply use this syntax:

<explanation>&myEntity;</explanation>

Injection Attacks 205

NSXMLParser instances have several configurable parameters that can
be set after instantiation. If shouldResolveExternalEntities is set to YES on an
NSXMLParser instance, the parser will honor Document Type Definitions (DTDs),
which can define entities fetched from external URLs. (That’s why these are
called external entities.) When a defined entity is encountered later in the
parsed XML, the URL will be requested, and the results of the query will be
used to populate the XML, as in this example:

NSURL *testURL = [NSURL URLWithString:@"http://api.nostarch.com"];

NSXMLParser *testParser = [[NSXMLParser alloc] initWithContentsOfURL:testURL];

[testParser setShouldResolveExternalEntities:YES];

Here, an XML parser is instantiated that reads data from an NSURL passed
to the initWithContentsOfURL argument. But if the remote server decides to
return huge amounts of data, or to simply hang, the client application may
crash or hang in response.

Remember, however, that an external entity can also refer to a local file,
meaning the file’s contents could be included in your parsed XML. If that
XML is stored and then later delivered to the server or another third party,
the contents of the file will be disclosed along with the rest of the XML. To
avoid such scenarios, ensure that any URL or filename passed to the XML
parser is thoroughly sanitized, ideally by a using whitelisting approach, as I
discussed in relation to cross-site scripting in “Whitelisting Allowable Input”
on page 12.

Note that in iOS 7.0 and 7.1 the default behavior of the XML parser
is to resolve external entities (the opposite of the parser’s intended behav-
ior), and using setShouldResolveExternalEntities:NO doesn’t actually work.3

Unfortunately, there is no workaround to secure the XML parser for older
versions of iOS, short of using an alternative XML parser. The issue was
resolved in iOS 8.

NOTE Contrary to what some have claimed, NSXMLParser is not vulnerable to recursive entity
attacks, a type of denial of service otherwise known as the billion laughs attack.
Vulnerable parsers will resolve recursive entities (entities that reference other entities)
and chew up tons of system resources. However, if recursive entity declarations are
given to NSXMLParser, an NSXMLParserEntityRefLoopError is thrown.

Misuse of official external entities isn’t the only element of XML injec-
tion to watch for in iOS code, however. Some apps incorporate third-party
XML libraries, which bring their own set of problems.

3. http://support.apple.com/kb/HT6441

206 Chapter 12

http://support.apple.com/kb/HT6441

Issues with Alternative XML Libraries
You may encounter alternative XML libraries in various iOS projects, gener-
ally chosen for their improved performance characteristics over NSXMLParser

and their support for features such as XPath. (Ray Wenderlich offers a
good tutorial on choosing an XML parser on his blog.4) When examining
code that uses an alternate XML library, first ensure that external entity
expansion is disabled using that library’s standard methods. Then, confirm
that any XPath queries that integrate externally supplied input sanitize the
input first, as you would when preventing cross-site scripting. XPath queries
should also be parameterized in a manner similar to that of SQL queries
(see “SQL Injection” on page 203), but the methods for doing this may vary
depending on which third-party libraries are involved.

Closing Thoughts
Ultimately, handling most of the attacks in this chapter comes down to treat-
ing all external input as hostile: remove potentially malicious content and
encode or prepare it, if possible, to prevent code execution. It’s a good idea
to be specific about the content that is allowed for each parameter fetched
from the UI or from a remote user-manipulated source and enforce this in
your program.

Now I’ll turn away from shielding against malicious data and toward
protecting good data with appropriate cryptography.

4. http://www.raywenderlich.com/553/how-to-chose-the-best-xml-parser-for-your-iphone-project

Injection Attacks 207

http://www.raywenderlich.com/553/how-to-chose-the-best-xml-parser-for-your-iphone-project

PART IV
KEEPING DATA SAFE

13
ENCRYPTION AND AUTHENTICATION

While Apple’s cryptographic APIs are fairly robust,
many developers don’t know how to use them effec-
tively. There are two major built-in encryption com-
ponents that you have control over: the Keychain and
the Data Protection API. These components share
some of the same encryption keys and have similar protection attributes,
and I’ll cover them in this chapter. I’ll also provide a look at lower-level
crypto primitives and the (limited) circumstances in which you would want
to use them.

Using the Keychain
The Keychain is meant to be used when you have small snippets of sensitive
data to store, including passwords, personal data, and so on. The Keychain
itself is encrypted using the Device Key, combined with a user passcode if
available. The Keychain’s API consists of four main operations: SecItemAdd,
SecItemUpdate, SecItemCopyMatching, and SecItemDelete. These operations add
items to the Keychain, update existing items, retrieve items, and delete them
from the Keychain, respectively.

That said, I really wish I’d never see the GenericKeychain1 sample code
again. Everyone seems to base their Keychain code on it (which is reason-
able), but this code predates any of the modern Keychain protections that
actually prevent secret data from being stolen off your device by a physical
attacker. In this section, you’ll learn about those protections and how to take
advantage of them.

The Keychain in User Backups
When users perform full backups of their devices, they have two security-
related options: Unencrypted and Encrypted. Unencrypted backups can be
restored only to the same device they were received from. Encrypted back-
ups let the user select a passphrase to encrypt their backup data with. This
allows the backup to be restored to any device (except for items marked
with ThisDeviceOnly) and backs up the full contents of the Keychain as well.
If you don’t want your Keychain item to be stored in backups, you can use
the Keychain’s data protection attributes.

Keychain Protection Attributes
Keychain protection attributes specify when Keychain data is allowed to be
stored in memory and requested by the OS or an application. When adding
items such as passwords or personal data to the Keychain, it’s important to
specify a protection attribute because this explicitly states when the data
should be available. Not specifying a protection attribute should be consid-
ered a bug.

Specify attributes when first storing an item in the Keychain by using the
SecItemAdd method. You’ll need to pass in one of a predefined set of values
(see Table 13-1) for kSecAttrAccessible.

Three main types of access can be specified via this attribute:

Always accessible The key is always available, regardless of whether the
phone is locked.

Accessible when unlocked The key is accessible when the device is
unlocked; otherwise, attempts to access it will fail.

Accessible after first unlocked The key is accessible after the device
has booted and been unlocked for the first time.

For each of the three main types of Keychain protection, there is an
additional counterpart suffixed with ThisDeviceOnly. This means that the Key-
chain item will not be backed up to iCloud, will be backed up to iTunes only
if using encrypted backups, and cannot be restored onto another device.

1. http://developer.apple.com/library/ios/#samplecode/GenericKeychain/Introduction/Intro.html

212 Chapter 13

http://developer.apple.com/library/ios/#samplecode/GenericKeychain/Introduction/Intro.html

Table 13-1: Keychain Protection Attributes and Their Associated Meanings

Keychain protection attribute Meaning

kSecAttrAccessibleAfterFirstUnlock The key is inaccessible after boot,
until the user enters a passcode for
the first time.

kSecAttrAccessibleAlways The key is always accessible, as long
as the device is booted. Note that
this is deprecated in iOS 9 because
it has no real advantage over
kSecAttrAccessibleAfterFirstUnlock.

kSecAttrAccessibleAlwaysThisDeviceOnly The key is always accessible, but
it cannot be ported to other iOS
devices.

kSecAttrAccessibleAfterFirstUnlockThisDeviceOnly This is the same as the previous key,
but this key remains on only this
device.

kSecAttrAccessibleWhenUnlocked Whenever the device is unlocked
(that is, after the user has entered a
passcode), the key is accessible.

kSecAttrAccessibleWhenUnlockedThisDeviceOnly This is the same as the previous key,
but this key remains only on this
device (except for full, encrypted
backups).

kSecAttrAccessibleWhenPasscodeSetThisDeviceOnly This is the same as the previous key,
but this key will be available only to
users who have a passcode set and
will be removed from the device if
that passcode is unset. It will not be
included in any backups.

When Keychain protections were first introduced, the default value was
kSecAttrAccessibleAlways, creating an obvious security problem. Accessible in
this case should be taken to mean “available to a physical attacker”: if some-
one steals your device, they’ll be able to read the contents of the Keychain.
Generally, this is done by performing a temporary jailbreak and extracting
the keys; using kSecAttrAccessibleAfterFirstUnlock instead will usually prevent
this since a reboot is often required to perform the jailbreak. However, a
code execution attack (such as someone exploiting a bug in a Wi-Fi driver)
would give access to a device while it’s still running. In this case, kSecAttr-
AccessibleWhenUnlocked would be needed to prevent compromise of the keys,
meaning that the attacker would need to determine the user’s passcode to
extract secrets.

Encryption and Authentication 213

NOTE Unfortunately, brute-forcing a four-digit PIN on iOS is ridiculously fast. Not only can
this be done with a temporary jailbreak,2 but my colleagues have successfully built cute
robots to physically brute-force PINs in less than a day.3

Currently, the default attribute is kSecAttrAccessibleWhenUnlocked, which is
a reasonably restrictive default. However, Apple’s public documentation dis-
agrees about what the default attribute is supposed to be, so just in case, you
should set this attribute explicitly on all Keychain items. For your own code,
consider using kSecAttrAccessibleWhenUnlockedThisDeviceOnly if appropriate;
when examining third-party source code, ensure that restrictive protection
attributes are used.

In iOS 8, the kSecAttrAccessibleWhenPasscodeSetThisDeviceOnly protection
attribute was added. Developers have long requested an API that requires a
user to have a passcode set. This new attribute doesn’t directly accomplish
that, but developers can use it to make decisions based on whether a pass-
code is set. When you attempt to add an item to the Keychain specifying the
kSecAttrAccessibleWhenPasscodeSetThisDeviceOnly attribute, it will fail if the user
does not have a passcode set. You can use this failure as a point at which to
make a decision about whether to fall back to another Keychain protection
attribute, alert the user, or just store less sensitive data locally.

If the user does have a passcode set, the addition will be successful;
however, if the user ever decides to disable the passcode, the Class Keys
used to decrypt the item will be discarded, preventing the item from being
decrypted by the application.

Basic Keychain Usage
There are several classes of Keychain items, as listed in Table 13-2. Unless
you’re dealing with certificates, kSecClassGenericPassword can generally be
used for most sensitive data, so let’s look at some useful methods on that
class.

Table 13-2: Keychain Item Classes

Item class Meaning

kSecClassGenericPassword A plain-old password

kSecClassInternetPassword A password specifically used for an Internet service

kSecClassCertificate A cryptographic certificate

kSecClassKey A cryptographic key

kSecClassIdentity A key pair, comprising a public certificate and private key

2. https://www.trailofbits.com/resources/ios4_security_evaluation_slides.pdf

3. https://github.com/iSECPartners/R2B2

214 Chapter 13

https://www.trailofbits.com/resources/ios4_security_evaluation_slides.pdf
https://github.com/iSECPartners/R2B2

Listing 13-1 shows an example of how to use the Keychain to add a basic
password item, using SecItemAdd. It sets up a dictionary to hold a Keychain
query, which contains the appropriate key-value pairs to identify the pass-
word, sets a password policy, and specifies the password itself.

NSMutableDictionary *dict = [NSMutableDictionary dictionary];

NSData *passwordData = [@"mypassword" dataUsingEncoding:NSUTF8StringEncoding];

[dict setObject:(__bridge id)kSecClassGenericPassword forKey:(__bridge id)
kSecClass];

[dict setObject:@"Conglomco login" forKey:(__bridge id)kSecAttrLabel];

[dict setObject:@"This is your password for the Conglomco service." forKey:
(__bridge id)kSecAttrDescription];

[dict setObject:@"dthiel" forKey:(__bridge id)kSecAttrAccount];

[dict setObject:@"com.isecpartners.SampleKeychain" forKey:(__bridge id)

kSecAttrService];

[dict setObject:passwordData forKey:(__bridge id)kSecValueData];

[dict setObject:(__bridge id)kSecAttrAccessibleWhenUnlocked forKey:(__bridge id)

kSecAttrAccessible];

OSStatus error = SecItemAdd((__bridge CFDictionaryRef)dict, NULL);

if (error == errSecSuccess) {

NSLog(@"Yay");

}

Listing 13-1: Adding an item to the Keychain

Here, the kSecClassGenericPassword class is set for the Keychain item,
along with a user-readable label, a long description, the account (username),
and an identifier for the service (to prevent duplicates). The code also sets
the password and an accessibility attribute.

SecItemUpdate works similarly. Listing 13-2 shows SecItemUpdate in action
with an example that updates the user’s password, which is stored in
kSecValueData.

NSString *newPassword = @"";

NSMutableDictionary *dict = [NSMutableDictionary dictionary];

[dict setObject:(__bridge id)kSecClassGenericPassword forKey:(__bridge id)
kSecClass];

[dict setObject:@"dthiel" forKey:(__bridge id)kSecAttrAccount];

[dict setObject:@"com.isecpartners.SampleKeychain" forKey:(__bridge id)

kSecAttrService];

NSDictionary *updatedAttribute = [NSDictionary dictionaryWithObject:[newPassword

dataUsingEncoding:NSUTF8StringEncoding] forKey:(__bridge id)kSecValueData];

Encryption and Authentication 215

OSStatus error = SecItemUpdate((__bridge CFDictionaryRef)dict, (__bridge

CFDictionaryRef)updatedAttribute);

Listing 13-2: Updating a Keychain item with SecItemUpdate

When updating a Keychain item with SecItemUpdate, you have to set two
dictionaries. One should specify the basic Keychain identification informa-
tion (at least the class, account, and service information), and the other
should contain the attribute to update.

SecItemCopyMatching can be used to query the Keychain to find one or
more entries matching a given set of criteria. Typically, you’d construct
a search dictionary using the class, account, and service attributes you
use when creating or updating a Keychain item. Then, you’d instantiate
an NSDictionary that will hold the search results and perform the actual
SecItemCopyMatching call, passing in the search dictionary and a reference
to the result dictionary. An example can be found in Listing 13-3.

[dict setObject:(__bridge id)kSecClassGenericPassword forKey:(__bridge id)
kSecClass];

[dict setObject:@"dthiel" forKey:(__bridge id)kSecAttrAccount];

[dict setObject:@"com.isecpartners.SampleKeychain" forKey:(__bridge id)

kSecAttrService];

[dict setObject:(id)kCFBooleanTrue forKey:(__bridge id)kSecReturnAttributes];

NSDictionary *result = nil;

OSStatus error = SecItemCopyMatching((__bridge CFDictionaryRef)dict, (void *)&

result);

NSLog(@"Yay %@", result);

Listing 13-3: Querying the Keychain using SecItemCopyMatching

With the Keychain data in the result dictionary, you can then use this
information to perform your security-sensitive tasks such as authenticating to
a remote service or decrypting data. Note that if you construct a query based
on attributes that don’t include the account and service (which uniquely
identify Keychain items), you may get a return dictionary that contains more
than one Keychain item. This dictionary can be limited with kSecMatchLimit

(that is, by setting it to a value of 1), but this could lead to unpredictable
behavior if you’re trying to search for a single piece of data like a password.

You can probably guess at this point what a SecItemDelete call will look
like—see the example in Listing 13-4 for the actual code.

216 Chapter 13

NSMutableDictionary *searchDictionary = [NSMutableDictionary dictionary];

[searchDictionary setObject:(__bridge id)kSecClassGenericPassword forKey:
(__bridge id)kSecClass];

[searchDictionary setObject:@"dthiel" forKey:(__bridge id)kSecAttrAccount];

[searchDictionary setObject:@"com.isecpartners.SampleKeychain" forKey:(__bridge id)

kSecAttrService];

OSStatus error = SecItemDelete((__bridge CFDictionaryRef)searchDictionary);

Listing 13-4: Deleting a Keychain item using SecItemDelete

Note that if you don’t uniquely identify your Keychain item, all match-
ing items that your application has access to will be deleted.

Keychain Wrappers
When working with the Keychain, you’ll probably end up writing a number
of wrapper functions to make it more convenient since most applications
use only a subset of the Keychain API’s functionality. There are actually a
number of prewritten Keychain wrappers available from third parties; I tend
to prefer Lockbox4 for its simplicity and functionality. Lockbox provides a
set of class methods for storing strings, dates, arrays, and sets. You can see
the procedure for storing a secret string in Listing 13-5.

#import "Lockbox.h"

NSString *keyname = @"KeyForMyApp";

NSString *secret = @"secretstring";

[Lockbox setString:secret

forKey:keyname

accessibility:kSecAttrAccessibleWhenUnlocked];

Listing 13-5: Setting a Keychain item with Lockbox

The key name will be prefixed with your application’s bundle ID auto-
matically, and this value will be used as for both the account and service keys.
Retrieving data from the Keychain works as shown in Listing 13-6.

NSString *result = [Lockbox stringForKey:secret];

Listing 13-6: Retrieving a string from the Keychain using Lockbox

4. https://github.com/granoff/Lockbox

Encryption and Authentication 217

https://github.com/granoff/Lockbox

Whichever wrapper you choose or write, ensure that it has the ability
to set kSecAttrAccessible attributes because much available sample code
neglects this feature.

Shared Keychains
iOS has the capability to share Keychain data among multiple applications
from the same developer by using Keychain access groups. For example, if
you have a “buyer” app and a “seller” app for an online marketplace, you
can let your users share the same username and password between the two
applications. Unfortunately, this mechanism is widely misunderstood, which
has led people to do horrifying things such as using named pasteboards to
share items that should be specific to the Keychain.

NOTE To use Keychain access groups, your applications must share the same bundle seed ID.
This can be specified only upon creation of a new App ID.5

For your application to take advantage of access groups, you’ll need
to create an Entitlements property list (see Figure 13-1) containing an
array called keychain-access-groups, with a String entry for each shared Key-
chain item.

Figure 13-1: Define a Keychain access group consisting of your bundle seed ID and your
company prefix, followed by a common name for the Keychain item.

The Keychain item will consist of the bundle seed ID, followed by your
reverse-DNS notation developer identifier and a symbolic name that both
applications can refer to the entitlement with (see Listing 13-7).

[dict setObject:@"DTHIELISEC.securitySuite" forKey:(id)kSecAttrAccessGroup];

Listing 13-7: Setting the access group of a Keychain item

5. http://useyourloaf.com/blog/2010/4/3/keychain-group-access.html

218 Chapter 13

http://useyourloaf.com/blog/2010/4/3/keychain-group-access.html

Here, DTHIELISEC is the bundle seed ID. Your bundle ID will also be a
10-character alphanumeric string. You’ll need to pass in the value of your
new entitlement as the value of the kSecAttrAccessGroup key when creating
a Keychain item via the SecItemAdd function. Note that you can have only one
Keychain access group on a Keychain item.

NOTE Technically, if you create a Keychain access group and don’t specify it when creating a
Keychain item, the first string in the keychain-access-groups array will be used as the
default entitlement. So if you’re using only one access group, you don’t have to specify
the group when doing a SecItemAdd—but you should anyway.

iCloud Synchronization
iOS 7 introduced a mechanism to allow Keychain items to be synchronized
with iCloud, letting users share Keychain items across multiple devices. By
default, this is not enabled on application-created Keychain items, but it can
be enabled by setting kSecAttrSynchronizable to true.

[query setObject:(id)kCFBooleanTrue forKey:(id)kSecAttrSynchronizable];

Because this item is now potentially synchronized between multiple
Keychains, updates to the item (including deletion) will propagate to all
other locations as well. Ensure that your application can handle having
Keychain items removed or changed by the system. Also note that you can’t
specify an incompatible kSecAttrAccessible attribute when using this option.
For instance, specifying kSecAttrAccessibleWhenUnlockedThisDeviceOnly doesn’t
work because ThisDeviceOnly specifies that the item should never be backed
up, either to iCloud, to a laptop or desktop, or to any other synchronization
provider.

The Data Protection API
As an extra layer of protection, Apple introduced the Data Protection API
(not to be confused with Microsoft’s Data Protection API), which allows
developers to specify when file decryption keys are available. This lets you
control access to the file itself, similar to the kSecAttrAccessible attribute
of Keychain items. The Data Protection API uses the user’s passcode in
conjunction with a Class Key to encrypt keys specific to each protected
file and discards the Class Key in memory when those files should not be
accessible (that is, when the device is locked). When a PIN is enabled, the
passcode settings screen will indicate that Data Protection is enabled, as in
Figure 13-2.

Encryption and Authentication 219

Figure 13-2: Passcode settings with Data
Protection enabled

Protection Levels
There are several levels of protection that a developer can request with the
Data Protection API, which are roughly analogous to the kSecAttrAccessible

attributes one sets on Keychain items. Let’s explore those now.

The CompleteUntilFirstUserAuthentication Protection Level
CompleteUntilFirstUserAuthentication is the default file protection attribute
for iOS 5 and later. It will be applied to all applicable files unless another
attribute has been explicitly specified. It’s functionally similar to File-

ProtectionComplete, except the file is always available after the user first
unlocks the device after a reboot. This doesn’t offer a ton of protection
if someone gains remote code execution on your running device or if
there’s a Sandbox bypass, but it does protect you from some attacks that
require a reboot.

The Complete Protection Level
Complete is the safest file protection class available, if you can get away with
using it. Complete protection ensures that after a short delay, locking
the device discards the Class Key from memory and renders file contents
unreadable.

220 Chapter 13

This protection level is expressed with the NSFileProtectionComplete

attribute of NSFileManager and the NSDataWritingFileProtectionComplete flag
for NSData objects. For NSData objects, you can start by setting the NSData-

WritingFileProtectionComplete flag, as shown in Listing 13-8.

NSData *data = [request responseData];

if (data) {

NSError *error = nil;

NSString *downloadFilePath = [NSString stringWithFormat:@"%@mydoc.pdf", NS

TemporaryDirectory()];

[data writeToFile:downloadFilePath options:NSDataWritingFileProtectionComplete

error:&error];

Listing 13-8: Setting the NSDataWritingFileProtectionComplete flag on an NSData object

Once you’ve set NSDataWritingFileProtectionComplete on your NSData object,
you can use NNSFileManager to set the NSFileProtectionComplete flag.

NSArray *searchPaths = NSSearchPathForDirectoriesInDomains(NSDocumentDirectory, NS

UserDomainMask, YES);

NSString *applicationDocumentsDirectory = [searchPaths lastObject];

NSString *filePath = [applicationDocumentsDirectory stringByAppendingPathComponent:

@"mySensitivedata.txt"];

NSError *error = nil;

NSDictionary *attr =

[NSDictionary dictionaryWithObject:NSFileProtectionComplete

forKey:NSFileProtectionKey];

[[NSFileManager defaultManager] setAttributes:attr

ofItemAtPath:filePath

error:&error];

Listing 13-9: Setting the NSFileProtectionComplete flag using NSFileManager

You can also add file protection attributes on SQLite databases that
you create, using the weirdly long SQLITE_OPEN_READWRITE_SQLITE_OPEN_

FILEPROTECTION_COMPLETEUNLESSOPEN argument, as shown in Listing 13-10.

NSString *databasePath = [documentsDirectory stringByAppendingPathComponent:@"

MyNewDB.sqlite"];

sqlite3_open_v2([databasePath UTF8String], &handle, SQLITE_OPEN_CREATE|

SQLITE_OPEN_READWRITE_SQLITE_OPEN_FILEPROTECTION_COMPLETEUNLESSOPEN,NULL);

Listing 13-10: Setting protection attributes on SQLite databases

Encryption and Authentication 221

Think about how your app works before trying to use complete protec-
tion. If you have a process that will need continuous read/write access to a
file, this protection mode will not be appropriate.

The CompleteUnlessOpen Protection Level
The CompleteUnlessOpen protection level is slightly more complicated. You’ll
set it with the NSFileProtectionCompleteUnlessOpen flag when using NSFileManager

and set it with NSDataWritingFileProtectionCompleteUnlessOpen when manipu-
lating NSData stores. It is not, as its name might suggest, a mechanism that
disables file protection if a file is currently held open by an application.
CompleteUnlessOpen actually ensures that open files can still be written to
after the device is locked and allows new files to be written to disk. Any
existing files with this class cannot be opened when the device is locked
unless they were already open beforehand.

The way this works is by generating a key pair and using it to calculate
and derive a shared secret, which wraps the file key. Figure 13-3 illustrates
this process.

fKP fpubK

fprvK cpubK ss sha(ss)

((fK))

× =



   





Figure 13-3: Key generation and wrapping. Note that the file private key ¸ is transient
and is discarded after the wrapped file key is stored in the file metadata.

Let’s walk through this file protection process step by step:

1. As with all files, a file key ¶ is generated to encrypt the file’s contents.

2. An additional key pair is generated6 to produce the file public key ·
and the file private key ¸.

3. The file private key ¸ and the Protected Unless Open class public key ¹
are used to calculate a shared secret º.

4. An SHA-1 hash of this secret » is used to encrypt the file key.

5. This encrypted file key ¼ is stored in the file’s metadata, along with the
file public key.

6. The system throws away the file private key.

7. Upon closing the file, the unencrypted file key is erased from memory.

6. iOS generates the file public and file private keys using D. J.Bernstein’s Curve25519, an
Elliptic Curve Diffie-Hellman algorithm (http://cr.yp.to/ecdh.html).

222 Chapter 13

(http://cr.yp.to/ecdh.html).

8. When the file needs to be opened again, the Protected Unless Open
class private key and the file public key are used to calculate the shared
secret.

9. The SHA-1 hash of this key is then used to decrypt the file key.

The upshot of this process is that you can still write data while the
device is locked, without having to worry that an attacker will be able to
read that data.

The DataProtectionClass Entitlement
If your application is not going to need to read or write any files while in the
background or when the device is locked, you can add an entitlement to the
project with a value of NSFileProtectionComplete. This will ensure that all pro-
tectable data files written to disk will be accessible only when the device is
unlocked, which is the equivalent of setting kSecAttrAccessibleWhenUnlocked on
every applicable file.

NOTE While this will affect files managed with NSFileManager, NSData, SQLite, and Core
Data files, other types of files (for example, plists, caches, and so on) will not be
protected.

In Xcode 5 and later, the Data Protection entitlement is enabled by
default on new projects; however, old projects will not be automatically
migrated. Enabling entitlement itself is fairly simple—just flip the switch
as shown in Figure 13-4.

Figure 13-4: Enable the Data Protection entitlement in Xcode 5.

Encryption and Authentication 223

Note that applications that were installed before iOS 7 do not automati-
cally have Data Protection enabled. They either need to be updated or must
have specifically requested a Data Protection attribute in the past.

Checking for Protected Data Availability
For applications that do all their work in the foreground, Data Protection
should work transparently. For applications that need to work in the back-
ground while the device is locked, your application will need to determine
the availability of protected data before using it. This can be done via three
different mechanisms.

Implementing Delegate Methods
To be notified and take particular actions when data’s availability changes,
your application should implement the applicationProtectedDataWillBecome-

Unavailable and applicationProtectedDataDidBecomeAvailable delegate methods,
as in Listing 13-11.

- (void)applicationProtectedDataWillBecomeUnavailable:

(UIApplication *)application {

[self [theBodies hide]];

}

- (void)applicationProtectedDataDidBecomeAvailable:

(UIApplication *)application {

[self [theBodies exhume]];

}

Listing 13-11: Delegate methods for detecting Data Protection availability changes

Use these delegate methods to ensure that tasks requiring protected
data files clean up gracefully and to notify you when the files will be active
again.

Using the Notification Center
The NSNotificationCenter API essentially allows for an in-app broadcast
mechanism, where one part of the app can listen for an event notifica-
tion that can be called from other places in the code. To use the Noti-
fication Center to detect these state changes, you can register for the
UIApplicationProtectedDataWillBecomeUnavailable and UIApplicationProtected-

DataDidBecomeAvailable notifications, as shown in Listing 13-12.

- (BOOL)application:(UIApplication*)application didFinishLaunchingWithOptions:

(NSDictionary*)launchOptions {

224 Chapter 13

¶ NSNotificationCenter *nc = [NSNotificationCenter defaultCenter];

· [nc addObserver:self

selector:@selector(dataGoingAway:)

name:UIApplicationProtectedDataWillBecomeUnavailable

object:nil];

}

¸ - (void)dataGoingAway {

[self [theBodies hide]];

}

Listing 13-12: Using the Notification Center to detect data availability changes

At ¶, an instance of the default Notification Center is instantiated and
then an observer · is added that specifies the selector to call when the event
specified by name: occurs. Then you can simply implement that selector as
part of the same class ¸ and put any logic that you want to perform upon
receipt of the event there.

Detecting Data Protection Using UIApplication
You can also easily detect whether Data Protection is engaged at any given
time, as shown in Listing 13-13.

if ([[UIApplication sharedApplication] isProtectedDataAvailable]) {

[self [theBodies hide]];

}

Listing 13-13: Using the protectedDataAvailable property

Just check the Boolean result of the isProtectedDataAvailable instance
method of UIApplication.

Encryption with CommonCrypto
First things first: you are (probably) not a cryptographer.7 I’m not a cryptog-
rapher. It’s easy to think that you understand the subtleties of an encryption
algorithm or to copy and paste crypto code from somewhere online, but you
will generally mess up if you try to do crypto yourself.

7. Please disregard this if you are in fact a cryptographer.

Encryption and Authentication 225

That said, you should be aware of the CommonCrypto framework, if
only so you can tell when other developers are trying to play cryptogra-
pher. There are some lower-level primitives for encryption and decryption
operations, but the only one that you have any excuse for playing with is
CCCrypt. Listing 13-14 shows one example of how you might use it.

CCCrypt(CCOperation op, CCAlgorithm alg, CCOptions options,

const void *key, size_t keyLength, const void *iv, const void *dataIn,

size_t dataInLength, void *dataOut, size_t dataOutAvailable,

size_t *dataOutMoved);

Listing 13-14: Method signature for CCCrypt

The CCCrypt method takes 11 arguments: control over the algorithm,
key length, initialization vector, operation mode, and so on. Each one is a
potential place to make a cryptographic mistake. In my experience, there
are several common pitfalls that developers run into with CCCrypt, which I’ll
describe here. Don’t make the same mistakes!

Broken Algorithms to Avoid
CCCrypt supports known bad encryption algorithms, such as DES, and if
you use one, your app will almost certainly be susceptible to cryptographic
attacks and brute-forcing. Even if you’re using the more modern AES,
CCCrypt will let you switch from the default Cipher Block Chaining (CBC)
mode to Electronic Code Book (ECB) using CCOptions, which is another
bad idea. Using ECB mode causes identical blocks of plaintext to encrypt to
identical blocks of ciphertext.8 This is a problem because if attackers know
one piece of encrypted data, they can infer the contents of other blocks.
This can typically be solved with a salt or initialization vector, but they can
have problems as well.

Broken Initialization Vectors
The specification for AES’s CBC mode requires a nonsecret initialization
vector (IV) to be supplied to the algorithm. The IV helps to randomize the
encryption and produce distinct ciphertexts even if the same plaintext is
encrypted multiple times. That way, you don’t need to generate a new key
every time to prevent disclosure of identical blocks of data.

It’s important that you never reuse an IV under the same key, however,
or two plaintext messages that begin with the same bytes will have ciphertext
beginning with the same sequence of block values. This would reveal infor-
mation about the encrypted messages to an attacker. As such, it’s important
to use a random IV for each cryptographic operation.

8. I see this all the time. No one should ever switch from a secure default to ECB mode, but I still
come across this problem every month or two.

226 Chapter 13

You should also always make sure your call to AES CBC mode encryp-
tion functions don’t pass in a null initialization vector. If they do, then
multiple sets of messages will be encrypted using the same key and IV, result-
ing in the situation I just described.

As you can see, using a static IV or a null IV has the same result: small
blocks of ciphertext containing the same data will appear identical. An
example of where this might be a problem would be a password manager,
where encrypted keys are stored; if an attacker can read this data and deter-
mine that some of the ciphertexts are identical, they will know that the same
password is used for multiple websites.

Broken Entropy
In the worst case, you may come across code that uses rand to attempt to
obtain random bytes (rand being cryptographically insecure and not meant
for use in cryptographic operations). The official Cocoa way to obtain
entropy is via SecRandomCopyBytes.

uint8_t randomdata[16];

int result = SecRandomCopyBytes(kSecRandomDefault, 16, (uint8_t*)randomdata);

This code effectively acts as a wrapper of /dev/random, reading entropy
from the kernel’s built-in entropy pool. Note that the kSecRandomDefault con-
stant is not available on OS X, so if you’re writing code to be portable, simply
specify NULL as the first argument. (Under iOS, this is equivalent to using
kSecRandomDefault.)

Poor Quality Keys
People often mistakenly use a user-supplied password as an encryption
key. Especially on mobile devices, this results in a fairly weak, low-entropy
encryption key. Sometimes, it’s as bad as a four-digit PIN. When using user-
supplied input to determine an encryption key, a key derivation algorithm
such as PBKDF2 should be used. The CommonCrypto framework provides
this with CCKeyDerivationPBKDF.

PBKDF2 is a key derivation function that uses a passphrase plus repeated
iterations of a hashing algorithm to generate a suitable cryptographic key.
The repeated iterations intentionally cause the routine to take longer to
complete, making offline brute-force attacks against the passphrase far less
feasible. CCKeyDerivationPBKDF supports the following algorithms for iterators:

• kCCPRFHmacAlgSHA1

• kCCPRFHmacAlgSHA224

• kCCPRFHmacAlgSHA256

• kCCPRFHmacAlgSHA384

• kCCPRFHmacAlgSHA512

Encryption and Authentication 227

If at all possible, you should be using at least SHA-256 or above. SHA-1
should be considered deprecated at this point because advances have been
made to speed up cracking of SHA-1 hashes in recent years.

Performing Hashing Operations
In some circumstances, you may need to perform a hashing operation to
determine whether two blobs of data match, without comparing the entire
contents. This is frequently used to verify a file against a “known good” ver-
sion or to verify sensitive information without storing the information itself.
To perform a simple hashing operation on a string, you can use the CC_SHA

family of methods as follows:

char secret[] = "swordfish";

size_t length = sizeof(secret);

unsigned char hash[CC_SHA256_DIGEST_LENGTH];

¶ CC_SHA256(data, length, hash);

This code simply defines a secret and its length and makes a char hash to
contain the result of the hashing operation. At ¶, the call to CC_SHA_256 takes
whatever has been put into data, calculates the hash, and stores the result
in hash.

You may also be used to using OpenSSL for hashing functions. iOS does
not include OpenSSL, but it does include some compatibility shims for using
OpenSSL-dependent hashing code. These are defined in CommonDigest.h,
shown in Listing 13-15.

#ifdef COMMON_DIGEST_FOR_OPENSSL

--snip--

#define SHA_DIGEST_LENGTH CC_SHA1_DIGEST_LENGTH

#define SHA_CTX CC_SHA1_CTX

#define SHA1_Init CC_SHA1_Init

#define SHA1_Update CC_SHA1_Update

#define SHA1_Final CC_SHA1_Final

Listing 13-15: OpenSSL compatibility hooks for CommonCrypto hashing functions

So as long as you define COMMON_DIGEST_FOR_OPENSSL, OpenSSL-style
hashing operations should work transparently. You can see an example
in Listing 13-16.

#define COMMON_DIGEST_FOR_OPENSSL

#include <CommonCrypto/CommonDigest.h>

228 Chapter 13

SHA_CTX ctx;

unsigned char hash[SHA_DIGEST_LENGTH];

SHA1_Init(&ctx);

memset(hash, 0, sizeof(hash));

SHA1_Update(&ctx, "Secret chunk", 12);

SHA1_Update(&ctx, "Other secret chunk", 18);

SHA1_Final(hash, &ctx);

Listing 13-16: OpenSSL-style chunked SHA hashing

Listing 13-16 uses SHA1_Update and SHA1_Final, which is more appropriate
for hashing a large file, where reading the file in chunks reduces overall
memory usage.

Ensuring Message Authenticity with HMACs
It’s important to make sure that encrypted message data hasn’t been tam-
pered with or corrupted and that it was produced by a party in possession
of a secret key. You can use a keyed Hash Message Authentication Code (HMAC)
as a mechanism to guarantee the authenticity and integrity of a message. In
an iOS application, you could use this to verify the authenticity of messages
sent between applications or to have a remote server verify that requests
were produced by the correct application. (Just take care that the key is
generated and stored in such a way that it is unique to the device and well-
protected.)

To calculate an HMAC, you just need a key and some data to pass to the
CCHmac function, as shown in Listing 13-17.

#include <CommonCrypto/CommonDigest.h>

#include <CommonCrypto/CommonHMAC.h>

¶ NSData *key = [@"key for the hash" dataUsingEncoding:NSUTF8StringEncoding];

· NSData *data = [@"data to be hashed" dataUsingEncoding:NSUTF8StringEncoding];

¸ NSMutableData *hash = [NSMutableData dataWithLength:CC_SHA256_DIGEST_LENGTH];

¹ CCHmac(kCCHmacAlgSHA256, [key bytes], [key length], [data bytes], [data length],
[hash mutableBytes]);

Listing 13-17: Calculating an HMAC

Note that Listing 13-17 is simplified to show the basic mechanism;
embedding a static key in your source code is not a recommended prac-
tice. In most cases, this key should be dynamically generated and stored in
the Keychain. The operation is fairly simple. At ¶, the key for the hash is
passed in as a UTF-8 encoded string (this is the part that should be stored
in the Keychain). At ·, the data to be hashed is passed in, also as a UTF-8

Encryption and Authentication 229

string. Then an NSMutableData object is constructed ¸ to store the hash for
later use and all three components are passed to the CCHmac function at ¹.

Wrapping CommonCrypto with RNCryptor
If you need to use the encryption functionality exposed by CommonCrypto,
RNCryptor is a good framework.9 This wraps CommonCrypto and helps
perform the most common function needed from it: encrypting data via
AES with a user-supplied key. RNCryptor also helps you by providing sane
defaults. The basic examples given in the instructions should be sufficient
for most usage. See Listing 13-18 for basic usage.

NSData *data = [@"Data" dataUsingEncoding:NSUTF8StringEncoding];

NSError *error;

NSData *encryptedData = [RNEncryptor encryptData:data

withSettings:kRNCryptorAES256Settings

password:aPassword

error:&error];

Listing 13-18: Encryption with RNCryptor

Simply pass in your data to the encryptData method, along with a con-
stant specifying the encryption settings you want to use, a key (pulled from
the Keychain or from user input), and an NSError object to store the result.

Decrypting data (Listing 13-19) is more or less the inverse of encrypting,
except that you do not need to provide the kRNCryptorAES256Settings constant
because this is read from the header of the encrypted data.

NSData *decryptedData = [RNDecryptor decryptData:encryptedData

withPassword:aPassword

error:&error];

Listing 13-19: Decrypting RNCryptor-encrypted data

Encrypting streams or larger amounts of data while keeping memory
usage sane is slightly more involved (see https://github.com/rnapier/RNCryptor
for current examples), but the examples shown here cover the most com-
mon use case you’ll likely encounter.

NOTE An older version of RNCryptor suffered from a vulnerability10 that could allow an
attacker to manipulate a portion of the decrypted data by altering the ciphertext, so
make sure that your code is using the most up-to-date version of RNCryptor.

9. https://github.com/rnapier/RNCryptor

10. http://robnapier.net/blog/rncryptor-hmac-vulnerability-827

230 Chapter 13

https://github.com/rnapier/RNCryptor
https://github.com/rnapier/RNCryptor
http://robnapier.net/blog/rncryptor-hmac-vulnerability-827

Local Authentication: Using the TouchID
In iOS 8, Apple opened up the Local Authentication API so that third-
party apps could use the fingerprint reader as an authenticator. The Local
Authentication API is used by instantiating the LAContext class and passing it
an authentication policy to evaluate; currently, only one policy is available,
which is to identify the owner biometrically. Listing 13-20 shows this process
in detail. Note that using this API doesn’t give developers access to the
fingerprint—it just gives a success or failure from the reader hardware.

¶ LAContext *context = [[LAContext alloc] init];

· NSError *error = nil;

¸ NSString *reason = @"We use this to verify your identity";

¹ if ([context canEvaluatePolicy:LAPolicyDeviceOwnerAuthenticationWithBiometrics

error:&error]) {

º [context evaluatePolicy:LAPolicyDeviceOwnerAuthenticationWithBiometrics

localizedReason:reason

reply:^(BOOL success, NSError *error) {

if (success) {

» NSLog(@"Hooray, that's your finger!");

} else {

¼ NSLog(@"Couldn't read your fingerprint. Falling back to PIN or

something.");

}

}];

} else {

// Something went wrong. Maybe the policy can't be evaluated because the

// device doesn't have a fingerprint reader.

½ NSLog(@"Error: %@ %@", error, [error userInfo]);

}

Listing 13-20: Authenticating the user via a fingerprint

First, this code creates an LAContext object ¶ and an NSError object ·
to contain the results of the operation. There also needs to be a rea-
son to present to the user when the UI asks for their fingerprint ¸.
After creating these things, the code checks whether it can evaluate the
LAPolicyDeviceOwnerAuthenticationWithBiometrics policy at ¹.

If evaluation is possible, then the policy is evaluated º; the reason
and a block to handle the results of the evaluation are also passed to the
evaluatePolicy method. If the fingerprint authenticates successfully, you can
have the application allow whatever action it’s performing to continue ».
If the fingerprint is invalid, then depending on how you choose to write
your application, it can fall back to a different method of authentication or
authentication can fail entirely ¼.

Encryption and Authentication 231

If the call to canEvaluatePolicy at ¹ fails, then the execution ends up at ½.
This is most likely to happen if the user’s device doesn’t support the finger-
print reader, fingerprint functionality has been disabled, or no fingerprints
have been enrolled.

How Safe Are Fingerprints?
As with most other forms of biometric authentication, fingerprint authen-
tication is an imperfect approach. It’s convenient, but given that you leave
your fingerprints all over the place, it’s not difficult to re-create a mold that
would effectively simulate your finger. In the United States, law enforcement
is legally allowed to use fingerprints to unlock devices, whereas they cannot
compel someone to divulge their passcode.

There are a couple of things that developers can do to address these
shortcomings. The most obvious is to provide the user with an option to
use a PIN instead of using the TouchID, or perhaps in addition to the
TouchID. Another thing that can help mitigate fingerprint cloning attacks
is to implement a system similar to the one that Apple uses to handle the
lock screen: after three unsuccessful attempts, revert to a PIN or require
the user’s password. Because successfully getting a cloned fingerprint is an
unreliable process, this may help prevent a successful fraudulent fingerprint
authentication.

Closing Thoughts
Encryption and authentication features aren’t always the most straightfor-
ward to use, but given the importance of user data privacy, both from a legal
and reputational standpoint, correct deployment of these features is crucial.
This chapter should have given you a reasonable idea of the strategies you
might encounter or need to deploy. Protecting user privacy is a broader
topic than just encryption, though—you’ll be turning your attention to that
in the next chapter.

232 Chapter 13

14
MOBILE PRIVACY CONCERNS

People tend to carry location-aware mobile devices
wherever they go, and they store tons of personal data
on these devices, making privacy a constant concern
in mobile security. Modern iOS devices allow applica-
tions (upon request) to read people’s location data,
use the microphone, read contacts, access the M7 motion processor, and
much more. Using these APIs responsibly not only is important to users but
also can help reduce liability and increase the chances of the application
being gracefully accepted into the App Store.

I discussed a fair bit of privacy-related content in Chapter 10; this was
largely in regard to accidental data leakage. In this chapter, I’ll cover privacy
issues that affect both users and app authors when intentionally gathering
and monitoring user data, as well as mitigations for some potential pitfalls.

Dangers of Unique Device Identifiers
iOS’s unique device identifiers (UDIDs) stand as something of a cautionary
tale. For most of iOS’s history, the UDID was used to uniquely identify an
individual iOS device, which many applications then used to track user
activity or associate a user ID with particular hardware. Some companies
used these identifiers as access tokens to remote services, which turned out
to be a spectacularly bad idea.

Because many organizations were in possession of a device’s UDID and
because UDIDs weren’t considered sensitive, companies that did use the
UDID effectively as an authenticator were suddenly in a situation where
thousands of third parties had their users’ credentials. Software developers
also widely assumed that the UDID was immutable, but tools had long been
available to spoof UDIDs, either globally or to a specific application.

Solutions from Apple
As a result of those issues, Apple now rejects newly submitted applications
that use the uniqueIdentifier API, directing developers to instead use the
identifierForVendor API. This API returns an instance of the NSUUID class.
The identifierForVendor mechanism should return the same UUID for all
applications written by the same vendor on an iOS device, and that UUID
will be backed up and restored via iTunes. It is not immutable, however, and
can be reset by the user.

Older applications in the App Store that use uniqueIdentifier are returned
a string starting with FFFFFFFF, followed by the string normally returned by
identifierForVendor. Similarly, applications using gethostuuid are now rejected
from the App Store, and existing apps receive the identifierForVendor value
when calling this function.

Applications that use the NET_RT_IFLIST sysctl or the SIOCGIFCONF ioctl to
read the device’s MAC address now receive 02:00:00:00:00:00 instead. Of
course, using a MAC address as any kind of token or authenticator has
always been a terrible idea; MAC addresses leak over every network you
connect to, and they’re easy to change. The nonspecific return value appro-
priately punishes developers who have taken this approach.

For advertising and tracking purposes, Apple introduced the prop-
erty advertisingIdentifier of the ASIdentifierManager class. This property
returns an NSUUID that is available to all application vendors, but like
uniqueIdentifier, that NSUUID can be wiped or changed (as shown in
Figure 14-1).

Figure 14-1: The user interface for indi-
cating that the advertisingIdentifier
should be used for limited purposes

234 Chapter 14

The difference between this system and the original uniqueIdentifier API
is that advertisingIdentifier is explicitly

• only for advertising and tracking;

• not immutable; and

• subject to user preferences.

These aspects of advertisingIdentifier ostensibly give the user control
over what tracking advertisers are allowed to use the mechanism for. Apple
states that an application must check the value of advertisingTrackingEnabled,
and if set to NO, the identifier can be used only for “frequency capping, con-
version events, estimating the number of unique users, security and fraud
detection, and debugging.”1 Unfortunately, that list could encompass pretty
much anything advertisers want to do with the advertisingIdentifier.

You can determine the value of advertisingTrackingEnabled as shown in
Listing 14-1.

¶ BOOL limittracking = [[ASIdentifierManager sharedManager]

advertisingTrackingEnabled];

· NSUUID *advid = [[ASIdentifierManager sharedManager] advertisingIdentifier];

Listing 14-1: Determining whether limited ad tracking is enabled and fetching the
advertisingIdentifier

The call to advertisingTrackingEnabled at ¶ reads the user preference
for the advertising tracking ID before reading the advertisingIdentifier

itself at ·.

Rules for Working with Unique Identifiers
There are a few general rules to follow when working with unique identifiers
of any type. First, never assume identifiers are immutable. Any identifier
supplied by the device can be changed by someone in physical possession
of the device. Second, never assume a 1:1 relationship between devices and
identifiers. Identifiers can be moved from one device to another and as such
cannot be trusted to uniquely identify a single device. Because identifiers
can change, aren’t unique, and may be widely distributed, you also shouldn’t
use them to authenticate users. Finally, keep identifiers as anonymous as
possible. They might be useful for tracking general trends in user behavior,
but don’t tie an identifier to a user identity unless there’s a compelling need
to do so.

1. http://developer.apple.com/library/ios/#documentation/AdSupport/Reference/ASIdentifierManager_
Ref/ASIdentifierManager.html

Mobile Privacy Concerns 235

http://developer.apple.com/library/ios/#documentation/AdSupport/Reference/ASIdentifierManager_Ref/ASIdentifierManager.html
http://developer.apple.com/library/ios/#documentation/AdSupport/Reference/ASIdentifierManager_Ref/ASIdentifierManager.html

Mobile Safari and the Do Not Track Header
Starting with iOS 6, Mobile Safari includes the option to enable the Do Not
Track mechanism,2 which tells the remote server that the user wants to opt
out of being tracked by certain parties. This option is expressed with the
HTTP_DNT header. When set to 1, the header indicates that the user consents
to being tracked only by the site that is currently being visited. When set to 0,
it indicates that the user doesn’t want to be tracked by any party. Users can
enable this mode in the Safari settings (Figure 14-2).

Figure 14-2: The user interface for
enabling Do Not Track

At a minimum, it makes sense to assume that users want to protect
details of their activity from third-party advertisers or analytics firms. This
is the behavior specified by an HTTP_DNT value of 1, which is the header that
iOS sends by default.

But the definition of tracking varies. The specification for the Do Not
Track mechanism itself notes the following:

The WG has not come to consensus regarding the definition of
tracking and the scope of DNT. As such, a site cannot actually
say with any confidence whether or not it is tracking, let alone
describe the finer details in a tracking status resource.3

2. http://www.w3.org/TR/tracking-dnt/

3. http://www.w3.org/2011/tracking-protection/drafts/ tracking-dnt.html

236 Chapter 14

http://www.w3.org/TR/tracking-dnt/
http://www.w3.org/2011/tracking-protection/drafts/tracking-dnt.html

According to the specification, websites can prompt the user to opt
into specific tracking scenarios using the storeSiteSpecificTrackingException

JavaScript API, but this functionality is not widely implemented at the time
of this writing.

Cookie Acceptance Policy
Cookies on iOS are managed via the NSHTTPCookieStorage API. The method
sharedHTTPCookieStorage returns the cookie store, but despite the method’s
name, iOS cookie storage is specific to each application. Cookies actually
live in a database under the application main bundle directory.

NOTE The name sharedHTTPCookieStorage originates from OS X, where the OS uses a global
cookie store shared among all applications.

Cookies used by the URL loading system are accepted according to a
systemwide shared cookieAcceptPolicy, which any application can specify. This
policy can be set to any of the following:

NSHTTPCookieAcceptPolicyAlways Accept and store all received cookies.
This is the default.

NSHTTPCookieAcceptPolicyOnlyFromMainDocumentDomain Accept only first-
party cookies.

NSHTTPCookieAcceptPolicyNever Never accept cookies.

Note that on devices running anything older than iOS 7, the cookie
acceptance policy is shared among applications, which could cause prob-
lems for your application. On such devices, when another running appli-
cation changes its acceptance policy, your app’s policy changes as well. For
example, an application that relies on third-party cookies for advertising rev-
enue might repeatedly set its cookie policy to NSHTTPCookieAcceptPolicyAlways,
changing yours to the same policy in the process.

Fortunately, you can specify your preferred cookieAcceptPolicy using
events such as didFinishLaunchingWithOptions, and you can monitor for
changes to the cookie acceptance policy while your program is running,
as shown in Listing 14-2.

¶ [[NSNotificationCenter defaultCenter] addObserver:self selector:@selector
(cookieNotificationHandler:)
name:NSHTTPCookieManagerAcceptPolicyChangedNotification object:nil];

- (void) cookieNotificationHandler:(NSNotification *)notification {

NSHTTPCookieStorage *cookieStorage = [NSHTTPCookieStorage

sharedHTTPCookieStorage];

Mobile Privacy Concerns 237

· [cookieStorage setCookieAcceptPolicy:NS

HTTPCookieAcceptPolicyOnlyFromMainDocumentDomain];

}

Listing 14-2: Registering to receive notifications when the cookie acceptance policy
changes

Listing 14-2 registers an NSNotificationCenter at ¶, which listens for
NSHTTPCookieManagerAcceptPolicyChangedNotification. If the policy changes,
the selector identified at ¶, cookieNotificationHandler, will be called. In the
cookieNotificationHandler, you set the policy to NSHTTPCookieAcceptPolicyOnly-

FromMainDocumentDomain at ·.
In iOS 7 and later, changes in cookie management policy affect only the

running application. Applications can also specify different cookie manage-
ment policies for different HTTP sessions via NSURLSession. For more on this,
see “Using NSURLSession” on page 117.

Monitoring Location and Movement
One of the most useful features of mobile platforms is their ability to make
information and functionality relevant to a user’s current physical location
and method of movement. iOS devices primarily determine location based
on Wi-Fi and GPS, and they monitor body movement with the M7 motion
processor.

Gathering location and movement data has dangers, however. In this
section, I’ll discuss how gathering both types of data works and why you
should take care when storing such information.

How Geolocation Works
Wi-Fi geolocation scans for available wireless access points and queries a
database that has a record of access points and their GPS coordinates. These
databases are built by third parties that effectively wardrive entire cities and
note the coordinates of each discovered access point. Of course, this can
result in inaccurate results in some circumstances. For example, if someone
travels with network equipment, or relocates it, the location data may not get
updated for some time.

GPS can provide more specific navigation information, as well as motion
information, to track users in transit. This requires the ability to contact GPS
satellites, which is not always possible, so GPS is often used as a fallback or
when a high degree of accuracy is required. GPS is also required to deter-
mine information such as speed or altitude.

The Risks of Storing Location Data
Few aspects of mobile privacy have generated as much negative press as
tracking users via geolocation data. While useful for an array of location-

238 Chapter 14

aware services, a number of issues arise when location data is recorded and
stored over time. Most obvious are privacy concerns: users may object to
their location data being stored long-term and correlated with other per-
sonal information.4 Aside from PR concerns, some European countries have
strict privacy and data protection laws, which must be taken into account.

A less obvious problem is that storing location data linked to specific
users could leave you legally vulnerable. When you store location data along
with data that links it to a specific individual, that data could be subpoenaed
by law enforcement or litigators. This often occurs in divorce cases, where
lawyers attempt to demonstrate infidelity by showing the physical comings
and goings of one of the parties in the course of a relationship; toll author-
ities that use electronic tracking have had to respond to these inquiries for
years.

Restricting Location Accuracy
Because precise historical location data raises such privacy and liability con-
cerns, it’s important to use the least degree of accuracy necessary for your
intended purpose. For example, if your application is designed to determine
what city or neighborhood a user is in for the purpose of making a dinner
reservation, you’ll only need to get a user’s location within a kilometer or so.
If your purpose is to find the nearest ATM to a user, you’ll want to use some-
thing significantly narrower. The following are the geolocation accuracy
constants available via the Core Location API:

• kCLLocationAccuracyBestForNavigation

• kCLLocationAccuracyBest

• kCLLocationAccuracyNearestTenMeters

• kCLLocationAccuracyHundredMeters

• kCLLocationAccuracyKilometer

• kCLLocationAccuracyThreeKilometers

Restricting location accuracy to the least degree necessary is not only
a best practice for privacy and legal reasons but also reduces power con-
sumption. This is because less accurate methods use the rather quick Wi-Fi
detection mechanisms and update less frequently, while the highest accuracy
settings will often use GPS and update frequently.

If you do need to store multiple instances of a user’s location over
time, ensure that procedures are in place to prune this data eventually. For
instance, if you need to reference only a month’s worth of location data at a
time, ensure that older data is properly sanitized or erased. If you’re using
location data for analytics that don’t require linking to a specific user, omit
or remove any data that uniquely identifies the user.

4. http://www.pskl.us/wp/wp-content/uploads/2010/09/iPhone-Applications-Privacy-Issues.pdf

Mobile Privacy Concerns 239

http://www.pskl.us/wp/wp-content/uploads/2010/09/iPhone-Applications-Privacy-Issues.pdf

Requesting Location Data
Permission data is requested using CLLocationManager, which specifies an
accuracy constant as well as whether your app needs location data when
it’s backgrounded. Listing 14-3 shows an example invocation.

¶ [self setLocationManager:[[CLLocationManager alloc] init]];

· [[self locationManager] setDelegate:self];

¸ [[self locationManager] setDesiredAccuracy:kCLLocationAccuracyHundredMeters];

if ([[self locationManager] respondsToSelector:
@selector(requestWhenInUseAuthorization)]) {

¹ [[UIApplication sharedApplication] sendAction:
@selector(requestWhenInUseAuthorization)

to:[self locationManager]

from:self

forEvent:nil];

º [[self locationManager] startUpdatingLocation];

}

Listing 14-3: Requesting location data permissions

Here, a CLLocationManager is allocated ¶ and its delegate is set to self ·.
Then the desired accuracy of about 100 meters is set at ¸. At ¹, the permis-
sion request is sent, which will cause the authorization prompt to appear
to the user. Finally, at º, there’s a request for the manager to start monitor-
ing the user’s location.

Note that as of iOS 8, the location manager won’t actually start unless
you have a description of why you need location data. This is specified in
your Info.plist file, using either NSLocationWhenInUseUsageDescription if you need
to access location data only when the app is in use or NSLocationAlwaysUsage-

Description if you’ll also need to get location information from the back-
ground. Add one of these to your plist file, along with a concise but specific
rationale to be displayed to the user when they’re prompted to grant permis-
sion to location data.

Managing Health and Motion Information
Some of the most sensitive information that applications can handle is
health information about the user. On iOS, this data can be retrieved
using the HealthKit API and the APIs provided by the device’s M7 motion
processor, if it has one. You’ll take a brief look at how to read and write
this data and how to request the minimum privileges necessary for an app
to function.

NOTE As of iOS 9, HealthKit is available only on iPhones, not on iPads.

240 Chapter 14

Reading and Writing Data from HealthKit
HealthKit information can be requested either for reading or for both read-
ing and writing (somewhat confusingly called sharing by Apple). In keeping
with requesting only the permissions that are absolutely necessary, request
read-only access if possible. Listing 14-4 shows how permissions for specific
health data are requested.

if ([HKHealthStore isHealthDataAvailable]) {

HKHealthStore *healthStore = [[HKHealthStore alloc] init];

¶ HKObjectType *heartRate = [HKObjectType quantityTypeForIdentifier:

HKQuantityTypeIdentifierHeartRate];

· HKObjectType *dob = [HKObjectType characteristicTypeForIdentifier:

HKCharacteristicTypeIdentifierDateOfBirth];

¸ [healthStore requestAuthorizationToShareTypes:

[NSSet setWithObject:heartRate]

readTypes:[NSSet setWithObject:dob]

¹ completion:^(BOOL success, NSError *error) {

if (!success) {

// Failure and sadness

} else {

// We succeeded!

}

}];

}

Listing 14-4: Requesting health data permissions

At ¶ and ·, you specify two types of data that you’d like to access,
namely, heart rate and date of birth. At ¸, you request authorization to
access these, with a completion block to handle success or failure. Note that
the requestAuthorizationToShareTypes is requesting read/write access, presum-
ably because this application is intended to track and record the user’s heart
rate. The readTypes parameter specifies that you want to monitor the user’s
heart rate but not write to it. In this case, you’re requesting the user’s date
of birth (something rather unlikely to change) to infer their age. Finally, to
allow you to distribute the application, you’ll need to enable the HealthKit
entitlement in Xcode, as shown in Figure 14-3.

While HealthKit shows how to record steps, but there are more detailed
ways to get motion data to help guess exactly what kind of activity the user is
engaged in. This more detailed data can be retrieved using the M7 motion
tracker.

Mobile Privacy Concerns 241

Figure 14-3: Enabling the HealthKit entitlement in Xcode

The M7 Motion Processor
The iPhone 5s introduced the M7 motion-tracking processor, which allows
for the recording of detailed information about small movements while
reducing the battery drain that this has incurred in the past. Fitness applica-
tions could use this data to determine the type of physical activity the user
is currently engaging in and how many steps they’ve taken. Applications
that monitor sleep quality could also take advantage of this to determine
how deep the user is sleeping based upon slight movements. Obviously, the
ability to determine when a user is asleep and what they’re doing outside of
using the phone is a significant responsibility. Apple details the degree to
which users can be tracked via the M7 as follows:

M7 knows when you’re walking, running, or even driving. For
example, Maps switches from driving to walking turn-by-turn
navigation if, say, you park and continue on foot. Since M7 can
tell when you’re in a moving vehicle, iPhone 5s won’t ask you to
join Wi-Fi networks you pass by. And if your phone hasn’t moved
for a while, like when you’re asleep, M7 reduces network pinging
to spare your battery.5

Use of the M7 processor is granted in a manner similar to basic geolo-
cation permissions. But M7 has a quirk not present in other geolocation
data access: applications have access to data that was recorded before they
were granted permission to access location data. If you’re going to use this
historic data, inform the user in your permissions message and, ideally, give
them a choice as to whether to use or disregard this data.

5. http://www.apple.com/iphone-5s/features/

242 Chapter 14

http://www.apple.com/iphone-5s/features/

Requesting Permission to Collect Data
When attempting to access sensitive data such as a user’s contacts, calendar,
reminders, microphone, or motion data, the user will be prompted with
an alert to grant or deny this access. To ensure that the user is presented
with useful information as to why you need this access, define strings to be
delivered to the user as part of the access prompt. Make these explanations
simple but descriptive, as in Figure 14-4.

Figure 14-4: Delivering the request to the user

You can set those messages in your app’s Info.plist file through Xcode,
shown in Figure 14-5.

Figure 14-5: Describing needs for various kinds of access in an Info.plist

Additionally, ensure that your application handles the refusal of these
permissions gracefully. Unlike Android, where permission granting is an
all-or-nothing affair, iOS applications are expected by Apple to be able to
handle having some permissions granted and others refused.

Mobile Privacy Concerns 243

Proximity Tracking with iBeacons
Apple’s iBeacons are designed to measure your proximity to hardware
and take certain actions when you’re within range. For example, an app
could use the beacons to track your movements through a mall or store,
or indicate that the car that just pulled up next to you is the Uber car you
requested. iBeacon functionality is part of the Core Location API, which
uses Bluetooth Low Energy (BTLE) on compatible devices to manage prox-
imity monitoring.

In this section, I’ll first discuss how some applications check for iBea-
cons and how iOS devices can become iBeacons. I’ll end on privacy issues
you should consider when using iBeacons in your own apps.

Monitoring for iBeacons
Monitoring for iBeacons is accomplished by instantiating a Core Loca-
tion CLLocationManager and passing a CLBeaconRegion to the manager’s
startMonitoringForRegion method, as in Listing 14-5.

¶ NSUUID *myUUID = [[NSUUID alloc] initWithUUIDString:
@"CE7B5250-C6DD-4522-A4EC-7108BCF3F7A4"];

NSString *myName = @"My test beacon";

CLLocationManager *myManager = [[CLLocationManager alloc] init];

[myManager setDelegate:self];

· CLBeaconRegion *region = [[CLBeaconRegion alloc] initWithProximityUUID:myUUID

¸ identifier:myName];

[myManager startMonitoringForRegion:region];

Listing 14-5: Initiating monitoring for a specific region defined by a UUID

The NSUUID generated at ¶ is assigned to a CLBeaconRegion · and
will be used to uniquely identify that beacon. The identifier ¸ will specify
the symbolic name for the beacon. Note you can register to monitor for
multiple regions with the same CLLocationManager.

NOTE You can use the uuidgen(1) command in the terminal to generate a unique UUID to
use as a beacon identifier.

You’ll also need to implement a locationManager delegate method, as in
Listing 14-6, to handle location updates.

- (void)locationManager:(CLLocationManager *)manager

didEnterRegion:(CLRegion *)region {

if ([[region identifier] isEqualToString:myName]) {

244 Chapter 14

[self startRangingBeaconsInRegion:region];

}

}

Listing 14-6: An example locationManager delegate method

This method will be called whenever a device running your application
enters an iBeacon’s registered region; your app can then perform whatever
logic is appropriate upon entering that region. Once the application gets
the notification that the device has entered the range of a beacon, it can
start ranging, or measuring the distance between the device and the beacon.

After an application has begun ranging a beacon, the locationManager:did-

RangeBeacons:inRegion delegate method (Listing 14-7) will be called periodi-
cally, allowing the application to make decisions based on the proximity of
the beacon.

- (void)locationManager:(CLLocationManager *)manager didRangeBeacons:
(NSArray *)beacons inRegion:(CLBeaconRegion *)region

{

CLBeacon *beacon = [beacons objectAtIndex:0];

switch ([beacon proximity]) {

case CLProximityImmediate:

//

break;

case CLProximityNear:

//

break;

case CLProximityFar:

//

break;

case CLProximityUnknown:

//

break;

}

}

Listing 14-7: The locationManager callback for examining beacons

There are four constants representing proximity: CLProximityImmediate,
CLProximityNear, CLProximityFar, and CLProximityUnknown. See Table 14-1 for the
meanings of these values.

Mobile Privacy Concerns 245

Table 14-1: Region Proximity (Range) Measurements

Item class Meaning

CLProximityUnknown The range is undetermined.

CLProximityImmediate The device is right next to the beacon.

CLProximityNear The device is within a few meters of the beacon.

CLProximityFar The device is within range but near the edge of the region.

Turning an iOS Device into an iBeacon
BTLE iOS devices can also act as iBeacons, broadcasting their presence
to the outside world, which can be used to detect and measure proximity
between iOS devices. This is done via the CoreBluetooth framework, using
a CBPeripheralManager instance and giving it a CLBeaconRegion with a chosen
UUID (Listing 14-8).

¶ NSUUID *myUUID = [[NSUUID alloc] initWithUUIDString:
@"CE7B5250-C6DD-4522-A4EC-7108BCF3F7A4"];

· NSString *myName = @"My test beacon";

¸ CLBeaconRegion *region = [[CLBeaconRegion alloc] initWithProximityUUID:myUUID

identifier:myName];

¹ NSDictionary *peripheralData = [region peripheralDataWithMeasuredPower:nil];

º CBPeripheralManager *manager = [[CBPeripheralManager alloc] initWithDelegate:self

queue:nil];

» [manager startAdvertising:peripheralData];

Listing 14-8: Turning your application into an iBeacon

The code generates a UUID at ¶ and a symbolic name at ·, and then
defines a region at ¸. At ¹, the peripheralDataWithMeasuredPower method
returns a dictionary with the information needed to advertise the beacon
(the nil parameter just tells the code to use the default signal strength
parameters for the device). At º, an instance of CBPeripheralManager is instan-
tiated and finally the peripheralData » is passed to the manager so it can
begin advertising.

Now that you’ve taken a look at how iBeacons are managed, let’s look at
some of the privacy implications of implementing them.

246 Chapter 14

iBeacon Considerations
Obviously, iBeacons provide extremely detailed information about a user’s
whereabouts. Beacons don’t have to be dumb transmitters; they can also be
programmable devices or other iOS devices that can record location updates
and deliver them to central servers. Users are likely to object to this data
being tracked over the long term, so as with other geolocation data, avoid
keeping any beacon logs for any longer than they’re specifically needed.
Also, don’t tie the time and beacon information in such a way that they can
be correlated with a specific user in the long term.

Your app should turn the device it’s installed on into a beacon sparingly.
Becoming a beacon makes the device discoverable, so be sure to inform the
user of your intentions in a manner that communicates that fact. If possible,
perform Bluetooth advertising for only a limited time window, ceasing it
once necessary data has been exchanged.

Now that you’ve looked at some of the many ways apps gather informa-
tion about users, let’s look at some of the policy guidelines that will dictate
how those apps handle personal data.

Establishing Privacy Policies
For your own protection, always explicitly state a privacy policy in your appli-
cation. If your app is set to Made for Kids, a privacy policy is both an App
Store requirement and a legal one, as required by the Children’s Online
Privacy Protection Act (COPPA).

I’m no lawyer, so of course, I can’t give specific legal advice on how your
policy should be implemented. However, I would advise you to include the
following in your privacy policy:

• The information your app gathers and whether it is identifying or non-
identifying (that is, whether it can be tied back to a specific user)

• The mechanisms by which information is gathered

• The reasons for gathering each type of data

• How that data is processed and stored

• The retention policy of the data (that is, how long data is stored)

• If and how the information you gather is shared with third parties

• How users can change data collection settings if desired

• Security mechanisms in place to protect user data

• A history of changes to the privacy policy

The Electronic Frontier Foundation (EFF) provides a good template for
developing an effective and informative privacy policy, which you can find at
https://www.eff.org/policy.

Mobile Privacy Concerns 247

https://www.eff.org/policy

Do note that Apple has some specific requirements for how to imple-
ment privacy policies in the application and how they should be made
available. Specifically, all applications that offer autorenewed or free sub-
scriptions and apps that are categorized as Made for Kids must include a
URL to a privacy policy. If the application is set to Made for Kids, the policy
needs to be localized for each localization within the application.6

Closing Thoughts
In light of disclosures about massive government surveillance in the United
States and abroad, consumer awareness and concern about companies
gathering and correlating their personal information and habits is likely
to increase. It’s also become clear that the more information you gather
on your users, the greater your company risks exposure. Companies with
the most detailed information on their users are those most attractive to
government intrusion, either by subpoena, monitoring, or active hacking by
intelligence agencies.

In summary, always clearly define your intentions and minimize data
gathered to limit your exposure and to build and maintain trust with
consumers.

6. https://developer.apple.com/library/ios/documentation/LanguagesUtilities/Conceptual/
iTunesConnect_Guide/8_AddingNewApps/AddingNewApps.html

248 Chapter 14

https://developer.apple.com/library/ios/documentation/LanguagesUtilities/Conceptual/iTunesConnect_Guide/8_AddingNewApps/AddingNewApps.html
https://developer.apple.com/library/ios/documentation/LanguagesUtilities/Conceptual/iTunesConnect_Guide/8_AddingNewApps/AddingNewApps.html

INDEX

A
Address Sanitizer (ASan), 55
Address Space Layout Randomization

(ASLR), 8, 53–54, 87
advertisingIdentifier, 235
advertisingTrackingEnabled, 235
AES algorithm, 226–227
AFNetworking, 122–124
alloc, 19
.app directory, 78–79
Apple System Log (ASL), 161–164
application anatomy, 27–38

Bundle directory, 33–34
Data directory, 34–37
device directories, 32–33
Documents directory, 34–35
Shared directory, 37

applicationDidEnterBackground, 20, 167,
179–180, 183

application extensions, 140–144
extensionPointIdentifier, 144
extension points, 140
NSExtensionActivationRule, 142
NSExtensionContext, 143
NSExtensionItem, 143
shouldAllowExtensionPoint

-Identifier, 143
third-party keyboards, 144

Application Support directory, 35
applicationWillResignActive, 180
applicationWillTerminate, 20, 167, 183
app review, 3–4, 10–12

evading, 11–12
App Store, 3–4,

review process, 10–12
bypassing, 11–12

ARC (Automatic Reference
Counting), 19

ASan (Address Sanitizer), 55
ASIHTTPRequest, 122, 124–125
ASL (Apple System Log), 161–164

ASLR (Address Space Layout
Randomization), 8, 53–54, 87

authentication
biometrics, 231–232
fingerprint authentication,

safety of, 232
HTTP basic authentication,

110–111, 119–121
Local Authentication API, 231–232
TouchID, 231–232

LAContext, 231–232
autocorrection, 175–177
Automatic Reference Counting

(ARC), 19
autoreleasepool, 19

B
backtrace (bt) command, 65–66
BEAST attack, 117
biometrics, 231–232
black-box testing, 77
blacklisting, 200
blocks, Objective-C

declaring, 18
exposing to JavaScript, 150–151

Bluetooth Low Energy (BTLE), 244
Bluetooth PAN, 125
Bonjour, 125
Boot ROM, 4
breakpoints, 62

actions, 70–72, 164
conditions, 72
enabling/disabling, 64
setting, 62–64

brute-forcing, PINs, 214
bt (backtrace) command, 65–66
BTLE (Bluetooth Low Energy), 244
buffer overflows, 12, 193–196

example, 194–195
preventing, 195–196

Bundle directory, 33–34
bundle ID, 33, 138

bundle seed ID, 218–219
BurpSuite, 43–47

C
CA (certificate authority), 114–115
CA certificate, 44

certificate management, 47
certificate pinning, 114–117, 124

defeating, 96–97
cache management, 170–171

removing cached data, 171–174
Caches directory, 35–36
caching, 36
CALayer, 182–183
canonical name (CN), 128–129
canPerformAction, 168–169
categories, Objective-C, 22–23
CBPeripheralManager, 246
CCCrypt, 186, 226
CCHmac, 229
CCRespring, 79
certificate authority (CA), 114–115
certificateHandler, 126
CFArrayRef, 112–113
CFBundleURLSchemes, 133
CFDataRef, 113
CFPreferences, 36, 178
CFStream, 48, 107, 128–129
chflags command, 42
clang, 51–53
class-dump command, 90, 92–93
CLBeaconRegion, 244, 246
CLLocationManager, 240, 244
CN (canonical name), 128–129
Cocoa, 14
Cocoa Touch, 14
code segment, 193–195
codesign command, 82
CommonCrypto, 151, 230, 230

CCCrypt, 226
CompleteUnlessOpen, 222–223
CompleteUntilFirstUser-

Authentication, 220
cookieAcceptPolicy, 237
cookies, 36

acceptance policy, 237–238
theft of, 114

Cookies directory, 36
copy/paste, disabling, 168–169

Cordova, 150, 154–157
Cordova.plist, 156
CoreBluetooth, 246
Core Data, 204, 223
CRIME attack, 118
cross-site scripting (XSS), 199–200

input sanitization, 200–201
output encoding, 201–202

cryptid, 81, 86–90
cryptoff, 86–90
cryptsize, 86–90
cURL, 78

certificates, 93–94
Cycript, 90, 93–94
Cydia, 31, 77
Cydia Substrate, 78, 97–100

D
DAC (discretionary access

control), 4–5
Data directory, 34–37
data leakage, 161–188

Apple System Log, 161–164
autocorrection, 175–177
breakpoint actions, 164
cache management, 170–174
dynamic-text.dat, 177
ephemeral sessions, 173
HTTP caches, 169–174

local storage, 174
iCloud, 161

avoidance of, 188
keylogger, 177
NSLog, 161–164

disabling, 163
NSURLSession, 173
pasteboards, 164–169

canPerformAction, 168
disabling copy/paste, 168–169
pasteboardDB file, 165–167
pasteboardWithUniqueName, 165–167
protecting data, 167–169
UISearchBar, 165
wiping, 167

snapshots, 178–184
applicationDidEnterBackground,

179–180
preventing suspension, 183–184
screen obfuscation, 179–183

250 INDEX

state preservation, 184–187
restorationIdentifier, 184–185

user preferences, 178
Data Protection API, 7–8, 219–225

Class Key, 220
CompleteUnlessOpen, 222–223
CompleteUntilFirstUser-

Authentication, 220
DataProtectionClass, 223
Data Protection entitlement,

223–224
delegate methods, 224
detecting, 225
FileProtectionComplete, 220–221
isProtectedDataAvailable, 225
protection levels, 220–223

DataProtectionClass entitlement, 157
data segment, 193–195
dataTaskWithRequest, 18
data theft, 161
dd command, 88
debugging, 61–75

breakpoints, 62
actions, 70–72
conditions, 72
enabling/disabling, 64
setting, 62–64

Debug Navigator, 65
debugserver, 81–84

connecting to, 83
installing, 81–82

fault injection, 72–73
frames and variables, 64–68
lldb, 62–75

backtrace (bt) command, 65–66
expr command, 69
frame select command, 66–67
frame variable command, 66
image list, 87
print object command, 67–68

object inspection, 68
tracing data, 74
variables and properties, 69–70

Debug Navigator, 65
debugserver, 81–84

connecting to, 83
installing, 81–82

decodeRestorableStateWithCoder, 184
decrypting binaries, 80–90

.default_created.plist, 32
Default-Portrait.png, 179
defaults command, 42
delegation, 20
DES algorithm, 226
deserialization, 21
developer team ID, 138
device directories, 32–33
Device Key, 7
device.plist, 32
didFinishNavigation, 159–160
did messages, 20
didReceiveCertificate, 126
disassembly, with Hopper, 94–96
discretionary access control

(DAC), 4–5
Documents directory, 34–35
Do Not Track, 236–237
dpkg command, 96, 99–101
DTrace, 55, 61
dumpdecrypted command, 80
_dyld_get_image_name, 10
dylibs, 10
dynamic analysis, 55
dynamic patching, 11–12

E
emulator, see Simulator
encodewithcoder, 21–22
encrypted segment, 84–90
encryption, 211–230

AES, CCB mode, 226–227
bad algorithms, 226
CommonCrypto, 225, 230

CCCrypt, 226
Curve25519, 222
Data Protection API, 5, 7–8,

219–225
Class Key, 220
CompleteUnlessOpen, 222–223
CompleteUntilFirstUser-

Authentication, 220
DataProtectionClass, 223
Data Protection entitlement,

223–224
delegate methods, 224
detecting, 225
FileProtectionComplete, 220–221

INDEX 251

encryption, Data Protection API,
continued

FileProtectionCompleteUnless-

Open, 222
isProtectedDataAvailable, 225
protection levels, 220–223

DES algorithm, 226
Device Key, 7
disk encryption, 5–7
Elliptic Curve Diffie-Hellman

algorithm, 222
entropy, 227
File Key, 7
full disk encryption, 5–7
hashing, 228–230
HMAC (Hash Message

Authentication Code),
229–230

initialization vector (IV), 226–227
Keychain, 6–7, 113, 186, 211–219

API, 7
backups, 212
iCloud synchronization, 219
item classes, 214
key hierarchy, 6–7
kSecAttrAccessGroup, 218–219
protection attributes, 212–214
SecItemAdd, 219
shared Keychains, 218–219
usage, 214–217
wrappers, 217–218

key derivation, 227–228
key quality, 227–228
Lockbox, 217
OpenSSL, 228–229
RNCryptor, 230
SecRandomCopyBytes, 227
TLS (Transport Layer Security),

127–129
entitlements, 218, 223
entitlements.plist, 81–82
entropy, 227
Erica Utilities, 31, 78
/etc/hosts, 49
EXC_BAD_ACCESS, 191
eXecute Never (XN), 8–9
expr command, 69
extensionPointIdentifier, 144
extractIdentityAndTrust, 112–113

F
fault injection, 72–73
File Juicer, 169, 174
File Key, 7
FileProtectionComplete, 220–221
filesystem monitoring, 58–59
Finder, 42
fingerprint authentication,

safety of, 232
forensic attackers, 161
format string attacks, 190–193

NSString, 192–193
preventing, 191–193

Foundation classes, 14
frames and variables, 68
frame select command, 66–67
frame variable command, 66
Full Disk Encryption, 5–7
fuzzing, 55

G
garbage collection, 18
gdb, 62
geolocation, 238

accuracy, 239
CLLocationManager, 240
risks, 238–239

get-task-allow, 82
Google Toolbox for Mac, 202
GPS, 238

H
handleOpenURL, 136
hashing, 228–230
Hash Message Authentication Code

(HMAC), 229
hasOnlySecureContent, 159–160
HealthKit, 240–241
heap, 8, 53–54, 193
hidden files, 41–42
HMAC (Hash Message Authentication

Code), 229
Homebrew, 46, 88, 94, 99
hooking

with Cydia Substrate, 97–100
with Introspy, 100–103

Hopper, 94–96

252 INDEX

HTML entities, 201
encoding, see output encoding

HTTP basic authentication, 110–111,
119–121

HTTP local storage, 174
HTTP redirects, 113–114

I
iBeacons, 244–247

CBPeripheralManager, 246
CLBeaconRegion, 244–246
CLLocationManager, 244
startMonitoringForRegion, 244

iBoot, 4
iCloud, 35, 111, 161, 212, 219

avoidance of, 187
IDA Pro, 94
identifierForVendor, 234
iExplorer, 28–29
iGoat, 178
image list, 87
implementation, declaring, 16–17
Info.plist, 33
init, 19
initialization vector (IV), 226–227
initWithCoder, 21–22
initWithContentsOfURL, 206
injection attacks, 199–207

cross-site scripting (XSS), 199–202
input sanitization, 200–201
output encoding, 200–202

displaying untrusted data, 202
predicate injection, 204–205
SQL injection, 203–204

parameterized SQL, 203–204
SQLite, 203–204

XML injection, 207
XML external entities, 205–206
XPath, 207

input sanitization, 200–201
installipa command, 80
InstaStock, 12
Instruments, 55–57
integer overflow, 196–198

example, 197–198
preventing, 198

interface, declaring, 15–16
interprocess communication, see IPC

(interprocess communication)

Introspy, 100–103
iOS-targeted web apps, 147–160
IPA Installer Console, 78
.ipa packages, 80
IPC (interprocess communication),

131–145
application extensions, 131, 140

extensionPointIdentifier, 144
extension points, 140
isContentValid, 143
NSExtensionActivationRule, 142
NSExtensionContext, 143
NSExtensionItem, 143
shouldAllowExtensionPoint

-Identifier, 143
third-party keyboards, 143–144

canOpenURL, 138
handleOpenURL, 136
isContentValid, 143
openURL, 132–137
sourceApplication, 136
UIActivity, 139–140
UIPasteboard, 144
universal links, 137–138
URL schemes, 132–133

CFBundleURLSchemes, 133
defining, 132–133
hijacking, 136–137
validating URLs and senders, 134

iproxy command, 84
isContentValid, 143
IV (initialization vector), 226–227
ivars, 15–17, 91

J
jailbreak detection, 9–10

futility of, 9
jailbreaking, 4, 9–10, 77
JavaScript, 11

executing in Cordova, 154–157
executing in UIWebView, 149–150
stringByEvaluatingJavaScriptFrom-

String, 149–150
JavaScript–Cocoa bridging, 150–157
JavaScriptCore, 150–154

blocks, 150–151
JSContext, 152–154
JSExport, 151–152

Jekyll, 12

INDEX 253

just-in-time (JIT) compiler, 8–9, 149
JRSwizzle, 25
JSContext, 152–154
JSExport, 151–152

K
kCFStreamSSLLevel, 129
Keychain API, 6–7, 113, 186, 211

backups, 212
iCloud synchronization, 219
kSecAttrAccessGroup, 218–219
protection attributes, 212–214
SecItemAdd, 214–215, 219
SecItemCopyMatching, 216
SecItemDelete, 216
SecItemUpdate, 215
shared Keychains, 218–219
usage, 214–217
wrappers, 217–218

key derivation, 227–228
keylogging, 175–177
killall command, 79, 101
kSecAttrAccessGroup, 218–219
kSecAttrAccessible, 220
kSecAttrSynchronizable, 219

L
LAContext, 231–232
ldid command, 97
LDID (link identity editor), 97
legacy issues, from C, 189–198

buffer overflows, 193–196
example, 194–195
preventing, 195–196

format string attacks, 190–193
NSString, 192–193
preventing, 191–193

integer overflow, 196–198
example, 197–198
preventing, 198

libc, 8
Library directory, 35–37

Application Support directory, 35
Caches directory, 35–36, 187

Snapshots directory, 36
Cookies directory, 36
Preferences directory, 36
Saved Application State directory, 37

LIKE operator, 205

link identity editor (LDID), 97
lipo command, 78, 85
lldb, 62–81, 83–84, 191

backtrace (bt) command, 65–66
breakpoints, 62

actions, 70–72, 164
conditions, 72
enabling/disabling, 64
setting, 62–64

expr command, 69
frame select command, 66–67
frame variable command, 66
image list, 87
print object command, 67–68

llvm, 90
Local Authentication API, 231–232
Logos, 98
loopback interface, 46–47
Lua, 12

M
M7 processor, 242
MAC (mandatory access control), 4–5
MAC address, 234
Mach-O binary format, 77, 85
MachOView, 88
MacPorts, 94
malloc, 197–198
mandatory access control (MAC), 4–5
MATCHES operator, 205
MCEncryptionNone, 126
MCEncryptionOptional, 126
MCEncryptionRequired, 126
MCSession, 126
message passing, 13–15
method swizzling, 23–25
Mobile Safari, 44
MobileTerminal, 78
multipeer connectivity, 125–127

certificateHandler, 126
didReceiveCertificate, 126
encryption, 125–127

N
netcat command, 78
networking, 107–129

AFNetworking, 122–124
certificate pinning, 123–124

254 INDEX

ASIHTTPRequest, 122, 124–125
backgroundSessionConfiguration, 117
CFStream, 48, 107, 128–129
ephemeralSessionConfiguration, 117
multipeer connectivity, 125–127

certificateHandler, 126
didReceiveCertificate, 126
encryption, 125–127

NSInputStream, 49
NSOutputStream, 49
NSStream, 48, 107, 127–128
NSURLSession, 122
URL loading system, 107–122

HTTP basic authentication,
110–111, 119–121

HTTP redirects, 113–114
NSURLConnection, 48, 108
NSURLConnectionDelegate, 109
NSURLCredential, 120
NSURLCredentialStorage, 110–111
NSURLRequest, 108
NSURLResponse, 108
NSURLSession, 48, 117
NSURLSessionConfiguration,

120–121
NSURLSessionTaskDelegate, 119
sharedCredentialStorage,

120–122
stored URL credentials, 121–122

Notification Center, 224–225
NSCoder, 185–187
NSCoding, 21–22
NSData, 113
NSExtensionContext, 143
NSExtensionItem, 143
NSFileManager, 221–223
NSHTTPCookieStorage, 237
NSHTTPRequest, 122
NSInputStream, 49
NSLog, 95, 161–164, 192

disabling, 163
NSNotificationCenter, 224–225
NSOperation, 122
NSOutputStream, 49
NSPredicate, 204–205
NSStream, 48, 107, 127–128
NSString, 192–193, 195, 202
NSURAuthenticationMethodClient-

Certificate, 112

NSURL, 188
NSURLCache, 74–75, 150
NSURLConnection, 48, 108, 117
NSURLConnectionDelegate, 109, 114
NSURLCredential, 113, 120
NSURLCredentialStorage, 110–111, 121
NSURLIsExcludedFromBackupKey, 35,

187–188
NSURLProtectionSpace, 109–111, 122
NSURLProtocol, 155
NSURLRequest, 108, 148–149
NSURLResponse, 108
NSURLSession, 48, , 117–122
NSURLSessionConfiguration, 117–119
NSURLSessionDataTask, 18
NSURLSessionTaskDelegate, 119
NSUserDefaults, 36, 37, 178
NSUUID, 234
NSXMLParser, 205–206

O
Objective-C, 13–25

blocks
declaring, 18
exposing to JavaScript, 150–151

categories, 22–23
code structure, 15–17
delightfulness of, 13
garbage collection, 18
implementation, declaring, 16–17
ivars, 15–16
message passing, 14–15
private methods, lack thereof, 16
property synthesis, 17
reference counting, 18–19

odcctools, 78, 84
OpenSSH, 78
OpenSSL, 94, 228–229
openssl command, 138
openURL, 132–137
otool, 53, 78, 84–86,

inspecting binaries, 90–92
output encoding, 200–202

P
p12 file, 113
parameterized SQL, 203–204
pasteboardDB file, 165–167

INDEX 255

pasteboards, 164–169
canPerformAction, 168
disabling copy/paste, 168–169
pasteboardDB file, 165–167
pasteboardWithUniqueName, 165–167
UISearchBar, 165

pasteboardWithUniqueName, 165–167
PhoneGap, 11, 150
physical attackers, 161
PIE (position-independent

executable), 53–54
removing, 87

plist files, 29–31
converting, 30–31
XML, 29–30

plutil command, 30–31
popen, 10
position-independent executable

(PIE), 53–54
removing, 87

predicate injection, 204–205
LIKE operator, 205
MATCHES operator, 205
wildcards, 204–205

predicates, 205
predicateWithFormat, 204–205
Preferences directory, 36
printf command, 87, 190–192
print object command, 67–68
privacy concerns, 233–248

advertisingTrackingEnabled, 235
bluetooth low energy (BTLE), 244
cookies, 237–238
Do Not Track, 236–237
geolocation, 238–240

accuracy, 239
CLLocationManager, 240
locationManager, 244
risks, 238–239

GPS, 238
HealthKit, 240–241
iBeacons, 244–247

CBPeripheralManager, 246
CLBeaconRegion, 244–246
CLLocationManager, 244
startMonitoringForRegion, 244

M7 processor, 242
MAC address, 234
microphone, 233

privacy policies, 247–248
proximity tracking, 244–247
requesting permission, 243
unique device identifier (UDID),

233–235
advertisingIdentifier, 235
identifierForVendor, 234
NSUUID, 234
uniqueIdentifier, 234

private methods, 16
property synthesis, 17
protocols, 20–22

declaring, 21–22
proximity tracking, 244–247
proxy setup, 43–50

Q
Quick Look, 35, 68
QuickType, 177

R
reference counting model, 18–19

retain and release, 18–19
references, strong and weak, 19
release, 18–19
remote device wipe, 5, 6
removeAllCachedResponses, 75
respringing, 79, 101
restorationIdentifier, 184–185
retain, 18–19
return-to-libc attack, 8
RNCryptor, 186, 230
rootViewController, 183
rsync command, 78

S
safe string APIs, 195
Sandbox, 4–5
Saved Application State directory, 37
Seatbelt, 4–5
SecCertificateRef, 112–113
SecIdentityRef, 112–113
SecItemAdd, 186, 212, 215, 219
SecItemCopyMatching, 216
SecItemDelete, 216
SecItemUpdate, 215
SecRandomCopyBytes, 227
SecTrustRef, 112–113

256 INDEX

Secure Boot, 4
SecureNSCoder, 186–187
securityd, 7
serialization, 21
setAllowsAnyHTTPSCertificate, 108
setJavaScriptCanOpenWindows-

Automatically, 159
setJavaScriptEnabled, 159–160
setResourceValue, 188
setSecureTextEntry, 175–177
setShouldResolveExternal-

Entities, 206
Shared directory, 37
sharedCredentialStorage, 120–122
sharedHTTPCookieStorage, 237
shared Keychains, 218–219
shouldAllowExtensionPoint-

Identifier, 143
should messages, 20
shouldSaveApplicationState, 20
shouldStartLoadWithRequest, 148
sideloading, 77–80
signed integer, 196
signedness, 51, 196
Simulator, 43–46

camera, 43
case-sensitivity, 43
installing certificates, 44
Keychain, 43
PBKDF2, 43
proxying, 44–46
trust store, 44

SpringBoard, 79
SQL injection, 201, 203–204

parameterized SQL, 203–204
SQLite, 203–204

SSH, 28, 82
SSL, see TLS (Transport Layer

Security)
SSL Conservatory, 115–117
SSL Killswitch, 96–97
stack, 8, 53–54, 190, 193
startMonitoringForRegion, 244
state preservation, 184–187

leaks, 184–185
restorationIdentifier, 184–185
secure, 185–187

static analysis, 54
std::string, 195

strcat, 195
strcpy, 194, 195
stringByEvaluatingJavaScriptFrom-

String, 149–150
strlcat, 195–196
strlcpy, 195–196
strong references, 19
stunnel, 46
subclassing, 23
synthesize, 17
syslog, 162, 190

T
task_for_pid-allow, 82
tcpdump command, 78
tcpprox, 49–50
TCP proxying, 49–50
test devices, 42
text segment, 85–86
Theos, 97–98
thin binaries, 85
ThisDeviceOnly, 212
TLS (Transport Layer Security),

108–119, 127–129
BEAST attack, 118
bypassing validation, 44–47, 119
certificate pinning, 114–117,

123–124
CRIME attack, 118
mutual authentication, 112–113
setAllowsAnyHTTPSCertificate, 108
validation, category bypasses, 22

tmp directory, 37, 80, 187
Today screen, 131
TOFU (trust on first use), 127
TouchID, 231–232

LAContext, 231–232
Transport Layer Security, see TLS

(Transport Layer Security)
Tribbles, 51
trust on first use (TOFU), 127
tweaks, Cydia Substrate, 97

U
UDID (unique device identifier),

233–235
advertisingIdentifier, 235
identifierForVendor, 234

INDEX 257

UDID (unique device identifier),
continued

NSUUID, 234
uniqueIdentifier, 234

UIActivity, 139–140
UIAlertView, 183
UI Layers, 182–183
UIPasteBoard, 144, 164–169
UIPasteboardNameFind, 165
UIPasteboardNameGeneral, 165
UIRequiredDeviceCapabilities, 34
UIResponderStandardEditActions, 169
UISearchBar, 165, 175
UITextField, 175
UITextView, 175
UIView, 182–183
UIWebView, 200, 201
UIWindow, 182–183
unique device identifier (UDID),

233–235
advertisingIdentifier, 235
identifierForVendor, 234
NSUUID, 234
uniqueIdentifier, 234

uniqueIdentifier, 234
universal links, 137–138
unsigned integer, 196
URL loading system, 107

credential persistence types, 111
HTTP basic authentication, 110–111
HTTP redirects, 113–114
NSURLConnection, 108
NSURLConnectionDelegate, 109
NSURLCredential, 120
NSURLCredentialStorage, 110–111
NSURLRequest, 108
NSURLResponse, 108
NSURLSession, 117–122
NSURLSessionConfiguration, 117–119
NSURLSessionTaskDelegate, 119
sharedCredentialStorage, 120–122
stored URL credentials, 121–122

URL schemes, 132–133
CFBundleURLSchemes, 133
defining, 132–133
hijacking, 136–137
validating URLs and senders, 134

USB, TCP proxying, 84
usbmuxd command, 84

user preferences, 178
UUID, 27
uuidgen, 244

V
Valgrind, 55
vbindiff command, 78, 88
vfork, 10
.vimrc file, 30
vmaddr, 88

W
wardriving, 238
warning policies, 51
watchdog, 58–59
watchmedo command, 58–59
weak_classdump, 93
weak references, 19
web apps, 147–160
WebViews, 9, 147–160

Cordova, 154–157
risks, 156
XmlHttpRequest, 155

JavaScript, 149
executing in Cordova, 154–157
executing in UIWebView, 149–150
stringByEvaluatingJavaScriptFrom-

String, 149–150
JavaScript–Cocoa bridging, 150–157
JavaScriptCore, 149–154

blocks, 150–151
JSContext, 152–154
JSExport, 151–152

just-in-time (JIT) compiler, 149
Nitro, 148, 149
NSURLRequest, 148–149
UIWebView, 147–150
WebKit, 11, 147–148
WKWebView, see WKWebView

whitelisting, 149, 152, 200–201
will messages, 20
willSendRequestForAuthentication-

Challenge, 112
Wireshark, 46
WKPreferences, 160
WKWebView, 148 158–160

addUserScript, 159
benefits of, 159–160

258 INDEX

didFinishNavigation, 159–160
hasOnlySecureContent, 159–160
setJavaScriptCanOpenWindows-

Automatically, 159
setJavaScriptEnabled, 159–160
WKPreferences, 160
WKUserScript, 159
WKWebViewConfiguration, 160

X
xcodebuild, 190
Xcode setup, 50–53, 55

warnings, 51–53
Xcon, 10
XML injection, 207

NSXMLParser, 205–206
XML external entities, 205–206
XPath, 207

XN (eXecute Never), 8–9
XPath, 207
XSS (cross-site scripting), 199–200

input sanitization, 200–201
output encoding, 201–202

xxd command, 88

INDEX 259

The fonts used in iOS Application Security are New Baskerville, Futura, The
Sans Mono Condensed and Dogma. The book was typeset with LATEX 2ε
package nostarch by Boris Veytsman (2008/06/06 v1.3 Typesetting books for No
Starch Press).

Updates
Visit https://www.nostarch.com/iossecurity for updates, errata, and other
information.

The Car Hacker’s
Handbook
by craig smith

spring 2016, 352 pp., $49.95
isbn 978-1-59327-703-1

Rootkits and Bootkits
Reversing Modern Malware
and Next Generation Threats
by alex matrosov, eugene
rodionov, and sergey bratus

spring 2016, 304 pp., $49.95
isbn 978-1-59327-716-1

The IDa PRo Book,
2nd edition
The Unofficial Guide to the World’s
Most Popular Disassembler
by chris eagle

july 2011, 672 pp., $69.95
isbn 978-1-59327-289-0

android Security Internals
An In-Depth Guide to Android’s
Security Architecture
by nikolay elenkov

october 2014, 432 pp., $49.95
isbn 978-1-59327-581-5

black hat python
Python Programming for
Hackers and Pentesters
by justin seitz

december 2014, 192 pp., $34.95
isbn 978-1-59327-590-7

Game Hacking
Developing Autonomous Bots
for Online Games
by nick cano

spring 2016, 384 pp., $44.95
isbn 978-1-59327-669-0

More no-nonsense books from No Starch Press

phone:
800.420.7240 or

415.863.9900

email:
sales@nostarch.com

web:
www.nostarch.com

Eliminating security holes in iOS apps is
critical for any developer who wants to pro-
tect their users from the bad guys. In iOS
Application Security, mobile security expert
David Thiel reveals common iOS coding mis-
takes that create serious security problems
and shows you how to find and fix them.

After a crash course on iOS application
structure and Objective-C design patterns,
you’ll move on to spotting bad code and
plugging the holes. You’ll learn about:

z	 The iOS security model and the limits of its
built-in protections

z	 The myriad ways sensitive data can leak
into places it shouldn’t, such as through the
pasteboard

z	 How to implement encryption with the
Keychain, the Data Protection API, and
CommonCrypto

z	 Legacy flaws from C that still cause
problems in modern iOS applications

z	 Privacy issues related to gathering user
data and how to mitigate potential pitfalls

Don’t let your app’s security leak become
another headline. Whether you’re looking to
bolster your app’s defenses or hunting bugs in
other people’s code, iOS Application Security
will help you get the job done well.

About the Author
David Thiel has nearly 20 years of computer
security experience. His research and book
Mobile Application Security (McGraw-Hill)
helped launch the field of iOS application secu-
rity, and he has presented his work at security
conferences like Black Hat and DEF CON. An
application security consultant for years
at iSEC Partners, Thiel now works for the
Internet.org Connectivity Lab.

“The most thorough and thoughtful treatment
of iOS security that you can find today.”

—Alex Stamos, Chief Security Officer at Facebook

TH E F I N EST I N G E E K E NTE RTA I N M E NT™
www.nostarch.com

Thiel

iOS Application
Security

iOS Application Security

The Definitive Guide
for Hackers and Developers

“I LIE FLAT.” This book uses a durable binding that won’t snap shut.

$49.95 ($57.95 CDN)	 Shelve In: Computers/Security

Covers iOS 9

David Thiel
Foreword by Alex Stamos

The Definitive Guide for Hackers and Developers

	About the Author

	About the Technical Reviewer

	Brief Contents

	Contents in Detail

	Foreword by Alex Stamos

	Acknowledgments

	Introduction

	Who This Book Is For
	What's in This Book

	How This Book Is Structured

	Conventions This Book Follows

	A Note on Swift

	Mobile Security Promises and Threats

	What Mobile Apps Shouldn't Be Able to Do

	Classifying Mobile Security Threats in This Book

	Some Notes for iOS Security Testers

	Part I: iOS Fundamentals

	Chapter 1: The iOS Security Model

	Secure Boot

	Limiting Access with the App Sandbox

	Data Protection and Full-Disk Encryption

	The Encryption Key Hierarchy

	The Keychain API

	The Data Protection API

	Native Code Exploit Mitigations: ASLR, XN, and Friends

	Jailbreak Detection

	How Effective Is App Store Review?

	Bridging from WebKit

	Dynamic Patching
	Intentionally Vulnerable Code

	Embedded Interpreters

	Closing Thoughts

	Chapter 2: Objective-C for the Lazy

	Key iOS Programming Technology

	Passing Messages

	Dissecting an Objective-C Program

	Declaring an Interface

	Inside an Implementation File

	Specifying Callbacks with Blocks

	How Objective-C Manages Memory

	Automatic Reference Counting

	Delegates and Protocols

	Should Messages

	Will Messages

	Did Messages

	Declaring and Conforming to Protocols

	The Dangers of Categories

	Method Swizzling

	Closing Thoughts

	Chapter 3: iOS Application Anatomy

	Dealing with plist Files

	Device Directories

	The Bundle Directory

	The Data Directory

	The Documents and Inbox Directories

	The Library Directory

	The tmp Directory

	The Shared Directory

	Closing Thoughts

	Part II: Security Testing

	Chapter 4: Building Your Test Platform

	Taking Off the Training Wheels

	Suggested Testing Devices

	Testing with a Device vs. Using a Simulator

	Network and Proxy Setup

	Bypassing TLS Validation

	Bypassing SSL with stunnel

	Certificate Management on a Device

	Proxy Setup on a Device

	Xcode and Build Setup

	Make Life Difficult

	Enabling Full ASLR
	Clang and Static Analysis

	Address Sanitizer and Dynamic Analysis

	Monitoring Programs with Instruments

	Activating Instruments

	Watching Filesystem Activity with Watchdog

	Closing Thoughts

	Chapter 5: Debugging with lldb and Friends
	Useful Features in lldb

	Working with Breakpoints

	Navigating Frames and Variables

	Visually Inspecting Objects

	Manipulating Variables and Properties

	Breakpoint Actions

	Using llbd for Security Analysis

	Fault Injection

	Tracing Data

	Examining Core Frameworks

	Closing Thoughts

	Chapter 6: Black-Box Testing

	Installing Third-Party Apps

	Using a .app Directory

	Using a .ipa Package File

	Decrypting Binaries

	Launching the debugserver on the Device

	Locating the Encrypted Segment

	Dumping Application Memory

	Reverse Engineering from Decrypted Binaries

	Inspecting Binaries with otool
	Obtaining Class Information with class-dump

	Extracting Data from Running Programs with Cycript

	Disassembly with Hopper

	Defeating Certificate Pinning

	Hooking with Cydia Substrate

	Automating Hooking with Introspy

	Closing Thoughts

	Part III: Security Quirks of the Cocoa API

	Chapter 7: iOS Networking

	Using the iOS URL Loading System

	Using Transport Layer Security Correctly

	Basic Authentication with NSURLConnection
	Implementing TLS Mutual Authentication with NSURL Connection

	Modifying Redirect Behavior

	TLS Certificate Pinning

	Using NSURLSession

	NSURLSession Configuration

	Performing NSURLSession Tasks

	Spotting NSURLSession TLS Bypasses

	Basic Authentication with NSURL Session

	Managing Stored URL Credentials

	Risks of Third-Party Networking APIs

	Bad and Good Uses of AFNetworking

	Unsafe Uses of ASIHTTPRequest

	Multipeer Connectivity

	Lower-Level Networking with NSStream

	Even Lower-level Networking with CFStream

	Closing Thoughts

	Chapter 8: Interprocess Communication

	URL Schemes and the openURL Method

	Defining URL Schemes

	Sending and Receiving URL/IPC Requests

	Validating URLs and Authenticating the Sender

	URL Scheme Hijacking

	Universal Links

	Sharing Data with UIActivity

	Application Extensions

	Checking Whether an App Implements Extensions

	Restricting and Validating Shareable Data

	Preventing Apps from Interacting with Extensions

	A Failed IPC Hack: The Pasteboard

	Closing Thoughts

	Chapter 9: iOS-Targeted Web Apps

	Using (and Abusing) UIWebViews

	Working with UIWebViews

	Executing JavaScript in UIWebViews

	Rewards and Risks of JavaScript-Cocoa Bridges

	Interfacing Apps with JavaScriptCore

	Executing JavaScript with Cordova

	Enter WKWebView

	Working with WKWebViews

	Security Benefits of WKWebViews

	Closing Thoughts

	Chapter 10: Data Leakage

	The Truth About NSLog and the Apple System Log

	Disabling NSLog in Release Builds

	Logging with Breakpoint Actions Instead

	How Sensitive Data Leaks Through Pasteboards

	Restriction-Free System Pasteboards

	The Risks of Custom-Named Pasteboards

	Pasteboard Data Protection Strategies

	Finding and Plugging HTTP Cache Leaks

	Cache Management

	Solutions for Removing Cached Data

	Data Leakage from HTTP Local Storage and Databases

	Keylogging and the Autocorrection Database

	Misusing User Preferences

	Dealing with Sensitive Data in Snapshots

	Screen Sanitization Strategies

	Why Do Those Screen Sanitization Strategies Work?

	Common Sanitization Mistakes

	Avoiding Snapshots by Preventing Suspension

	Leaks Due to State Preservation

	Secure State Preservation

	Getting Off iCloud to Avoid Leaks

	Closing Thoughts

	Chapter 11: Legacy Issues and Baggage from C

	Format Strings

	Preventing Classic C Format String Attacks

	Preventing Objective-C Format String Attacks

	Buffer Overflows and the Stack

	A strcpy Buffer Overflow

	Preventing Buffer Overflows

	Integer Overflows and the Heap

	A malloc Integer Overflow

	Preventing Integer Overflows

	Closing Thoughts

	Chapter 12: Injection Attacks

	Client-Side Cross-Site Scripting

	Input Sanitization

	Output Encoding

	SQL Injection

	Predicate Injection

	XML Injection

	Injection Through XML External Entities

	Issues with Alternative XML Libraries

	Closing Thoughts

	Part IV: Keeping Data Safe

	Chapter 13: Encryption and Authentication

	Using the Keychain

	The Keychain in User Backups

	Keychain Protection Attributes

	Basic Keychain Usage

	Keychain Wrappers

	Shared Keychains

	iCloud Synchronization

	The Data Protection API

	Protection Levels

	The DataProtectionClass Entitlement

	Checking for Protected Data Availability

	Encryption with CommonCrypto

	Broken Algorithms to Avoid

	Broken Initialization Vectors

	Broken Entropy

	Poor Quality Keys

	Performing Hashing Operations

	Ensuring Message Authenticity with HMACs

	Wrapping CommonCrypto with RNCryptor

	Local Authentication: Using the TouchID

	How Safe Are Fingerprints?

	Closing Thoughts

	Chapter 14: Mobile Privacy Concerns

	Dangers of Unique Device Identifiers

	Solutions from Apple

	Rules for Working with Unique Identifiers

	Mobile Safari and the Do Not Track Header

	Cookie Acceptance Policy

	Monitoring Location and Movement

	How Geolocation Works
	The Risks of Storing Location Data

	Restricting Location Accuracy

	Requesting Location Data

	Managing Health and Motion Information

	Reading and Writing Data from HealthKit

	The M7 Motion Processor

	Requesting Permission to Collect Data

	Proximity Tracking with iBeacons

	Monitoring for iBeacons

	Turning an iOS Device into an iBeacon

	iBeacon Considerations

	Establishing Privacy Policies

	Closing Thoughts

	Index
	Support the Electronic Frontier Foundation

	Updates

